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Abstract. Let Mn be the formal sum of all length n strings composed
entirely of α’s and β’s which have no consecutive α’s, so that M1 = α + β

and M2 = αβ + ββ + βα. In this paper, we present a new combinatorial
method for discovering identities for Lucas sequences based on the result
that Mn satisfies the recurrence Mn = βMn−1 + αβMn−2 when n ≥ 3. A few
applications of this approach are presented.

1 Introduction

Denote the nth Fibonacci number by Fn, where F1 = F2 = 1 and Fn+1 =
Fn +Fn−1. A well known result states that there are Fn+2 strings of length n

consisting entirely of the characters ‘α’ and ‘β’ with no consecutive α’s. We
define a new sequence Mn to be the formal sum of all these length n strings,
so for example M1 = α + β, M2 = αβ + βα + ββ, and so on. With this new
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sequence, we can generalize the result for Fibonacci sequences, stated above,
to other second-order linear recurrence sequences:

Proposition 1 For n ≥ 3 we have that Mn satisfies the recurrence

Mn = βMn−1 + αβMn−2.

Before we prove this, notice that when α = β = 1, we have Mn = Fn+2.

Proof. Consider the formal sum Mn. Divide this sum into two subsums,
where the first subsum contains all strings which begin with β, while the
second subsum contains all strings which begin with α. If we remove the
leading β from all the terms in the first subsum, we are left with a formal
sum of all length (n − 1) strings which contain no consecutive α’s, which is
Mn−1; hence, the first subsum is βMn−1.

Since the leading character of all terms of the second subsum is α, and
since n ≥ 3, the second character of all these terms must be β, so that there
are no two consecutive α’s. If we remove this leading αβ from all terms in
the second subsum, we are left with the sum of all strings of α’s and β’s of
length n − 2 which contain no consecutive α’s, which is Mn−2; hence, the
second subsum if αβMn−2.

The two subsums together are therefore Mn = βMn−1 + αβMn−2. �

We may use this proposition to find a slightly tidier expansion for Mn by
thinking of α and β as numbers instead of just formal symbols. When we do
this, we can use the commutativity properties of multiplication and addition
to collect terms with the same number of α’s and β’s.

Proposition 2 If α and β commute then we have, for n ≥ 1,

Mn =

[n+1

2 ]
∑

i=0

(

n − i + 1

i

)

αiβn−i.

Proof. Since Mn is the formal sum of all length n strings of α’s and β’s
without consecutive α’s (by Proposition 1), we will count the number of such
strings which contain exactly i α’s and n − i β’s, for each i ≥ 0.

Suppose that there are precisely xj β’s before the jth α appears in a
given string. Since there are no consecutive α’s in the string, we must have
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0 ≤ x1 < x2 < · · · < xi ≤ n− i, and indeed each such sequence of integers xj

gives rise to a valid string of α’s and β’s. Thus the number of such strings is
the number of ways of selecting x1, ..., xi as above, which is

(

n−i+1
i

)

. Summing
up over the integers i ≥ 0 gives the result. �

From this proposition we deduce the following classical corollary concern-
ing Lucas sequences.

Corollary 1 If L0 = 0, L1 = 1 and Ln = aLn−1 + bLn−2 when n ≥ 3, then:

Ln =

[n−1

2 ]
∑

i=0

(

n − 1 − i

i

)

bian−1−2i.

Proof. If a = 0 the result is trivial, so henceforth assume that a 6= 0.
Now letting a = β and b = αβ, we find that L2 = β, L3 = ββ + αβ =
(β + α)β, and L4 = (βα + αβ + ββ)β. We may thus deduce, via a simple
induction hypothesis, that Ln = Mn−2β, when n ≥ 3 for Mn as defined
above. Therefore, by Proposition 2 above, we obtain

Ln = Mn−2β =







[n−1

2 ]
∑

i=0

(

n − 1 − i

i

)

αiβn−2−i






β

=

[n−1

2 ]
∑

i=0

(

n − 1 − i

i

)

bian−1−2i.

�

2 Another Application

In this section we establish a set of identities for Lucas sequences by again
using Proposition 1.

In Proposition 1 we gave a natural combinatorial definition for the se-
quence Mn that only makes sense for n ≥ 1. We can define Mn for n ≤ 0,
without a combinatorial interpretation, simply by using the recurrence defi-
nition for Mn found in Proposition 1, that is

M−(n+1) = −β−1α−1βM−n + β−1α−1M−(n−1).
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Then, for example, M0 = −β−1α−1βM1 + β−1α−1M2 = −β−1α−1β(α + β) +
β−1α−1(αβ + βα + ββ) = 1 and M−1 = −β−1α−1βM0 + β−1α−1M1 =
−β−1α−1β + β−1α−1(α + β) = β−1. With these definitions, we obtain
the following proposition, which generalizes the well-known identity that if
n = x1+x2+1, then Fn = Fx1

Fx2
+Fx1+1Fx2+1, where Fn is the nth Fibonacci

number as defined in the introduction.

Proposition 3 If α and β commute, and if n = x1 + x2 + · · ·+ xk + (k − 1)
where each xi is a positive integer, then

Mn = βk−1
∑

0≤δ1,δ2,...,δk−1≤1

(αβ)δ1+···+δk−1

k
∏

i=1

Mxi−δi−1−δi
,

where δ0 = δk = 0.

The identity noted above is the case k = 2, α = β = 1 of Proposition 3.

Proof. At first we will not assume that α and β commute. We partition a
given length n string of α’s and β’s with no consecutive α’s as follows: Begin
with a block of B1 of the first x1 characters, followed by a single character
D1, then a block B2 of the next x2 characters and a single character D2, and
continue until we finish with a block Bk of xk characters (note that we have
now accounted for x1 + 1 + x2 + 1 + · · · + xk = n characters; that is, the
whole string). We compute the sum Mn by splitting it up into subsums, each
different subsum determined by the sequence of characters D1, D2, ..., Dk−1.
Thus, we will let Dj = α and δj = 1; and Dj = β when δj = 0.

If δ1, ..., δk−1 are fixed, we consider what strings are possible in the block
Bj: If Dj−1 = α then the first character of Bj must be β since there can be no
consecutive α’s; and similarly, if Dj = α then the last characters of Bj must
be β. Otherwise the characters in Bj are free to be any string of α and β’s,
so long as there are no consecutive α’s. Thus the formal sum of the possible
strings in Bj, given by δj−1 and δj, must be βδj−1Mxj−δj−1−δj

βδj (special care
needs to be taken to verify this formula when xj −δj−1−δj = −1 or 0). Note
that the character Dj can be written as αδjβ1−δj . Thus we have

Mn =
∑

0≤δ1,δ2,...,δk−1≤1

(Mx1−δ1β
δ1)(αδ1β1−δ1)(βδ1Mx2−δ1−δ2β

δ2)(αδ2β1−δ2) · · ·

· · · (βδk−2Mxk−1−δk−2−δk−1
βδk−1)(αδk−1β1−δk−1)(βδk−1Mxk−δk−1

).
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Assuming that α and β commute, this sum becomes

∑

0≤δ1,...,δk−1≤1

Mx1−δ1β(αβ)δ1Mx2−δ1−δ2β(αβ)δ2 · · ·β(αβ)δk−1Mxk−δk−1

and the result follows when we collect the powers of αβ and β using commu-
tativity. �

Corollary 2 If L0 = 0, L1 = 1, and Ln = aLn−1 + bLn−2 when n ≥ 3, and
if n = x1 + x2 + · · · + xk + (k + 1) (notice the k + 1 – we had k − 1 before)
where each xi is a positive integer, then

Ln =
∑

0≤δ1,δ2,...,δk−1≤1

bδ1+δ2+···+δk−1

k
∏

i=1

Lxi+2−δi−1−δi
.

Proof. As in the proof of Corollary 1, we observe that when we let α = β

and b = αβ, we get the relation Lj = Mj−2β, or equivalently, Mj = β−1Lj+2.
Rewriting our partition of n as (n−2) = x1 + · · ·+xk +(k−1), and applying
Proposition 3 with each Mj = β−1Lj+2, we obtain the corollary. �
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