A Combinatorial Method for Developing Lucas Sequence Identities

Ernie Croot * Georgia Institute of Technology School of Math 267 Skiles Atlanta, GA 30332

ecroot@math.gatech.edu

April 16, 2007

Abstract. Let M_n be the formal sum of all length n strings composed entirely of α 's and β 's which have no consecutive α 's, so that $M_1 = \alpha + \beta$ and $M_2 = \alpha\beta + \beta\beta + \beta\alpha$. In this paper, we present a new combinatorial method for discovering identities for Lucas sequences based on the result that M_n satisfies the recurrence $M_n = \beta M_{n-1} + \alpha \beta M_{n-2}$ when $n \geq 3$. A few applications of this approach are presented.

1 Introduction

Denote the *n*th Fibonacci number by F_n , where $F_1 = F_2 = 1$ and $F_{n+1} = F_n + F_{n-1}$. A well known result states that there are F_{n+2} strings of length *n* consisting entirely of the characters ' α ' and ' β ' with no consecutive α 's. We define a new sequence M_n to be the formal sum of all these length *n* strings, so for example $M_1 = \alpha + \beta$, $M_2 = \alpha\beta + \beta\alpha + \beta\beta$, and so on. With this new

^{*}Supported by NSF grants DMS-0500863 and DMS-0301282. This was the author's first math paper, which was not, until now, published.

sequence, we can generalize the result for Fibonacci sequences, stated above, to other second-order linear recurrence sequences:

Proposition 1 For $n \ge 3$ we have that M_n satisfies the recurrence

$$M_n = \beta M_{n-1} + \alpha \beta M_{n-2}.$$

Before we prove this, notice that when $\alpha = \beta = 1$, we have $M_n = F_{n+2}$.

Proof. Consider the formal sum M_n . Divide this sum into two subsums, where the first subsum contains all strings which begin with β , while the second subsum contains all strings which begin with α . If we remove the leading β from all the terms in the first subsum, we are left with a formal sum of all length (n-1) strings which contain no consecutive α 's, which is M_{n-1} ; hence, the first subsum is βM_{n-1} .

Since the leading character of all terms of the second subsum is α , and since $n \geq 3$, the second character of all these terms must be β , so that there are no two consecutive α 's. If we remove this leading $\alpha\beta$ from all terms in the second subsum, we are left with the sum of all strings of α 's and β 's of length n-2 which contain no consecutive α 's, which is M_{n-2} ; hence, the second subsum if $\alpha\beta M_{n-2}$.

The two subsums together are therefore $M_n = \beta M_{n-1} + \alpha \beta M_{n-2}$.

We may use this proposition to find a slightly tidier expansion for M_n by thinking of α and β as numbers instead of just formal symbols. When we do this, we can use the commutativity properties of multiplication and addition to collect terms with the same number of α 's and β 's.

Proposition 2 If α and β commute then we have, for $n \geq 1$,

$$M_n = \sum_{i=0}^{\left[\frac{n+1}{2}\right]} {\binom{n-i+1}{i}} \alpha^i \beta^{n-i}.$$

Proof. Since M_n is the formal sum of all length n strings of α 's and β 's without consecutive α 's (by Proposition 1), we will count the number of such strings which contain exactly $i \alpha$'s and $n - i \beta$'s, for each $i \ge 0$.

Suppose that there are precisely $x_j \beta$'s before the *j*th α appears in a given string. Since there are no consecutive α 's in the string, we must have

 $0 \le x_1 < x_2 < \cdots < x_i \le n-i$, and indeed each such sequence of integers x_j gives rise to a valid string of α 's and β 's. Thus the number of such strings is the number of ways of selecting x_1, \ldots, x_i as above, which is $\binom{n-i+1}{i}$. Summing up over the integers $i \ge 0$ gives the result.

From this proposition we deduce the following classical corollary concerning Lucas sequences.

Corollary 1 If $L_0 = 0$, $L_1 = 1$ and $L_n = aL_{n-1} + bL_{n-2}$ when $n \ge 3$, then:

$$L_n = \sum_{i=0}^{\left[\frac{n-1}{2}\right]} {\binom{n-1-i}{i}} b^i a^{n-1-2i}.$$

Proof. If a = 0 the result is trivial, so henceforth assume that $a \neq 0$. Now letting $a = \beta$ and $b = \alpha\beta$, we find that $L_2 = \beta, L_3 = \beta\beta + \alpha\beta = (\beta + \alpha)\beta$, and $L_4 = (\beta\alpha + \alpha\beta + \beta\beta)\beta$. We may thus deduce, via a simple induction hypothesis, that $L_n = M_{n-2}\beta$, when $n \geq 3$ for M_n as defined above. Therefore, by Proposition 2 above, we obtain

$$L_{n} = M_{n-2}\beta = \left(\sum_{i=0}^{\left[\frac{n-1}{2}\right]} \binom{n-1-i}{i} \alpha^{i} \beta^{n-2-i}\right)\beta$$
$$= \sum_{i=0}^{\left[\frac{n-1}{2}\right]} \binom{n-1-i}{i} b^{i} a^{n-1-2i}.$$

2 Another Application

In this section we establish a set of identities for Lucas sequences by again using Proposition 1.

In Proposition 1 we gave a natural combinatorial definition for the sequence M_n that only makes sense for $n \ge 1$. We can define M_n for $n \le 0$, without a combinatorial interpretation, simply by using the recurrence definition for M_n found in Proposition 1, that is

$$M_{-(n+1)} = -\beta^{-1}\alpha^{-1}\beta M_{-n} + \beta^{-1}\alpha^{-1}M_{-(n-1)}.$$

Then, for example, $M_0 = -\beta^{-1}\alpha^{-1}\beta M_1 + \beta^{-1}\alpha^{-1}M_2 = -\beta^{-1}\alpha^{-1}\beta(\alpha + \beta) + \beta^{-1}\alpha^{-1}(\alpha\beta + \beta\alpha + \beta\beta) = 1$ and $M_{-1} = -\beta^{-1}\alpha^{-1}\beta M_0 + \beta^{-1}\alpha^{-1}M_1 = -\beta^{-1}\alpha^{-1}\beta + \beta^{-1}\alpha^{-1}(\alpha + \beta) = \beta^{-1}$. With these definitions, we obtain the following proposition, which generalizes the well-known identity that if $n = x_1 + x_2 + 1$, then $F_n = F_{x_1}F_{x_2} + F_{x_1+1}F_{x_2+1}$, where F_n is the *n*th Fibonacci number as defined in the introduction.

Proposition 3 If α and β commute, and if $n = x_1 + x_2 + \cdots + x_k + (k-1)$ where each x_i is a positive integer, then

$$M_n = \beta^{k-1} \sum_{0 \le \delta_1, \delta_2, \dots, \delta_{k-1} \le 1} (\alpha \beta)^{\delta_1 + \dots + \delta_{k-1}} \prod_{i=1}^k M_{x_i - \delta_{i-1} - \delta_i},$$

where $\delta_0 = \delta_k = 0$.

The identity noted above is the case k = 2, $\alpha = \beta = 1$ of Proposition 3.

Proof. At first we will not assume that α and β commute. We partition a given length n string of α 's and β 's with no consecutive α 's as follows: Begin with a block of B_1 of the first x_1 characters, followed by a single character D_1 , then a block B_2 of the next x_2 characters and a single character D_2 , and continue until we finish with a block B_k of x_k characters (note that we have now accounted for $x_1 + 1 + x_2 + 1 + \cdots + x_k = n$ characters; that is, the whole string). We compute the sum M_n by splitting it up into subsums, each different subsum determined by the sequence of characters $D_1, D_2, ..., D_{k-1}$. Thus, we will let $D_j = \alpha$ and $\delta_j = 1$; and $D_j = \beta$ when $\delta_j = 0$.

If $\delta_1, ..., \delta_{k-1}$ are fixed, we consider what strings are possible in the block B_j : If $D_{j-1} = \alpha$ then the first character of B_j must be β since there can be no consecutive α 's; and similarly, if $D_j = \alpha$ then the last characters of B_j must be β . Otherwise the characters in B_j are free to be any string of α and β 's, so long as there are no consecutive α 's. Thus the formal sum of the possible strings in B_j , given by δ_{j-1} and δ_j , must be $\beta^{\delta_{j-1}} M_{x_j-\delta_{j-1}-\delta_j} \beta^{\delta_j}$ (special care needs to be taken to verify this formula when $x_j - \delta_{j-1} - \delta_j = -1$ or 0). Note that the character D_j can be written as $\alpha^{\delta_j} \beta^{1-\delta_j}$. Thus we have

$$M_{n} = \sum_{0 \le \delta_{1}, \delta_{2}, \dots, \delta_{k-1} \le 1} (M_{x_{1}-\delta_{1}}\beta^{\delta_{1}})(\alpha^{\delta_{1}}\beta^{1-\delta_{1}})(\beta^{\delta_{1}}M_{x_{2}-\delta_{1}-\delta_{2}}\beta^{\delta_{2}})(\alpha^{\delta_{2}}\beta^{1-\delta_{2}}) \cdots \\ \cdots (\beta^{\delta_{k}-2}M_{x_{k-1}-\delta_{k-2}-\delta_{k-1}}\beta^{\delta_{k}-1})(\alpha^{\delta_{k-1}}\beta^{1-\delta_{k-1}})(\beta^{\delta_{k-1}}M_{x_{k}-\delta_{k-1}})$$

Assuming that α and β commute, this sum becomes

$$\sum_{0 \le \delta_1, \dots, \delta_{k-1} \le 1} M_{x_1 - \delta_1} \beta(\alpha \beta)^{\delta_1} M_{x_2 - \delta_1 - \delta_2} \beta(\alpha \beta)^{\delta_2} \cdots \beta(\alpha \beta)^{\delta_{k-1}} M_{x_k - \delta_{k-1}}$$

and the result follows when we collect the powers of $\alpha\beta$ and β using commutativity.

Corollary 2 If $L_0 = 0$, $L_1 = 1$, and $L_n = aL_{n-1} + bL_{n-2}$ when $n \ge 3$, and if $n = x_1 + x_2 + \cdots + x_k + (k+1)$ (notice the k+1 – we had k-1 before) where each x_i is a positive integer, then

$$L_n = \sum_{0 \le \delta_1, \delta_2, \dots, \delta_{k-1} \le 1} b^{\delta_1 + \delta_2 + \dots + \delta_{k-1}} \prod_{i=1}^k L_{x_i + 2 - \delta_{i-1} - \delta_i}.$$

Proof. As in the proof of Corollary 1, we observe that when we let $\alpha = \beta$ and $b = \alpha\beta$, we get the relation $L_j = M_{j-2}\beta$, or equivalently, $M_j = \beta^{-1}L_{j+2}$. Rewriting our partition of n as $(n-2) = x_1 + \cdots + x_k + (k-1)$, and applying Proposition 3 with each $M_j = \beta^{-1}L_{j+2}$, we obtain the corollary.

3 Acknowledgements

I would like to thank Andrew Granville, Carl Pomerance, and William R. Alford (now deceased) for their patience, support, and financial assistance which made this research possible. I would especially like to thank Andrew Granville who read through several of the drafts of this paper and who significantly shortened some of the proofs (many years ago when I was a graduate student!).