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Abstract

In 1994, Carl Pomerance proposed the following problem:
Select integers a1, a2, . . . , aJ at random from the interval [1, x], stopping when some
(non-empty) subsequence, {ai : i ∈ I} where I ⊆ {1, 2, . . . , J}, has a square product
(that is

∏
i∈I ai ∈ Z2). What can we say about the possible stopping times, J?

A 1985 algorithm of Schroeppel can be used to show that this process stops after
selecting (1+ ε)J0(x) integers aj with probability 1− o(1) (where the function J0(x)
is given explicitly in (1) below). Schroeppel’s algorithm actually finds the square
product, and this has subsequently been adopted, with relatively minor modifica-
tions, by all factorers. In 1994 Pomerance showed that, with probability 1−o(1), the
process will run through at least J0(x)1−o(1) integers aj , and asked for a more precise
estimate of the stopping time. We conjecture that there is a “sharp threshold” for
this stopping time, that is, with probability 1 − o(1) one will first obtain a square
product when (precisely) {e−γ + o(1)}J0(x) integers have been selected. Herein we
will give a heuristic to justify our belief in this sharp transition.

In our paper [4] we prove that, with probability 1−o(1), the first square product
appears in time

[(π/4)(e−γ − o(1))J0(x), (e−γ + o(1))J0(x)],

where γ = 0.577... is the Euler-Mascheroni constant, improving both Schroeppel
and Pomerance’s results. In this article we will prove a weak version of this theorem
(though still improving on the results of both Schroeppel and Pomerance). We also
confirm the well established belief that, typically, none of the integers in the square
product have large prime factors.

Our methods provide an appropriate combinatorial framework for studying the
large prime variations associated with the quadratic sieve and other factoring algo-
rithms. This allows us to analyze what factorers have discovered in practice.
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1 Introduction

Most factoring algorithms (including Dixon’s random squares algorithm [5], the quadratic
sieve [14], the multiple polynomial quadratic sieve [19], and the number field sieve [2]
– see [18] for a nice expository article on factoring algorithms) work by generating a
pseudorandom sequence of integers a1, a2, ..., with each

ai ≡ b2
i (mod n),

for some known integer bi (where n is the number to be factored), until some subsequence
of the ai’s has product equal to a square, say

Y 2 = ai1 · · · aik ,

and set
X2 = (bi1 · · · bik)2.

Then
n | Y 2 −X2 = (Y −X)(Y + X),

and there is a good chance that gcd(n, Y −X) is a non-trivial factor of n. If so, we have
factored n.

In his lecture at the 1994 International Congress of Mathematicians, Pomerance
[16, 17] observed that in the (heuristic) analysis of such factoring algorithms one assumes
that the pseudo-random sequence a1, a2, ... is close enough to random that we can make
predictions based on this assumption. Hence it makes sense to formulate this question
in its own right.

Pomerance’s Problem. Select positive integers a1, a2, . . . ≤ x independently at ran-
dom (that is, aj = m with probability 1/x for each integer m, 1 ≤ m ≤ x), stopping
when some subsequence of the ai’s has product equal to a square (a square product).
What is the expected stopping time of this process ?

There are several feasible positive practical consequences of resolving this question:
— It may be that the expected stopping time is far less than what is obtained by

the algorithms currently used. Hence such an answer might point the way to speeding
up factoring algorithms.

— Even if this part of the process can not be easily sped up, a good understanding
of this stopping time might help us better determine the optimal choice of parameters
for most factoring algorithms.

Let π(y) denote the number of primes up to y. Call n a y-smooth integer if all of its
prime factors are ≤ y, and let Ψ(x, y) denote the number of y-smooth integers up to x.
Let y0 = y0(x) be a value of y which maximizes Ψ(x, y)/y, and

J0(x) :=
π(y0)

Ψ(x, y0)
· x. (1)

2



In Pomerance’s problem, let T be the smallest integer t for which a1, ..., at has a square
dependence (note that T is itself a random variable). As we will see in section 4.1,
Schroeppel’s 1985 algorithm can be formalized to prove that for any ε > 0 we have

Prob(T < (1 + ε)J0(x)) = 1− oε(1)

as x →∞. In 1994 Pomerance showed that

Prob(T > J0(x)1−ε) = 1− oε(1).

as x → ∞. Therefore there is a transition from “unlikely to have a square product” to
“almost certain to have a square product” at T = J0(x)1+o(1). Pomerance asked in [3]
whether there is a sharper transition, and we conjecture that T has a sharp threshold:

Conjecture 1.1 For every ε > 0 we have

Prob(T ∈ [(e−γ − ε)J0(x), (e−γ + ε)J0(x)]) = 1− oε(1), (2)

as x →∞, where γ = 0.577... is the Euler-Mascheroni constant.

The bulk of this article will be devoted to explaining how we arrived at this conjecture.
In [4] we prove the upper bound in this conjecture using deep probabilistic methods in
an associated random graph. Here we discuss a quite different approach which justifies
the upper bound in this conjecture, but we have not been able to make all steps of the
proof rigorous.

The constant e−γ in this conjecture is well-known to number theorists. It appears
as the ratio of the proportion of integers free of prime divisors smaller than y, to the
proportion of integers up to y that are prime, but this is not how it appears in our
discusssion. Indeed herein it emerges from some complicated combinatorial identities,
which have little to do with number theory, and we have failed to find a more direct
route to this prediction.

Herein we will prove something a little weaker than the above conjecture (though
stronger than the previously known results) using methods from combinatorics, analytic
and probabilistic number theory:

Theorem 1.2 We have

Prob(T ∈ [(π/4)(e−γ − o(1))J0(x), (3/4)J0(x)]) = 1− o(1),

as x →∞.

To obtain the lower bound in our theorem, we obtain a good upper bound on the
expected number of sub-products of the large prime factors of the ai’s that equal a
square, which allows us to bound the probability that such a sub-product exists, for
T < (π/4)(e−γ − o(1))J0(x). This is the “first moment method”. Moreover the proof
gives us some idea of what the set I looks like: In the unlikely event that T < (π/4)(e−γ−
o(1))J0(x), with probability 1− o(1), the set I consists of a single number aT , which is
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therefore a square. If T lies in the interval given in Theorem 1.2 (which happens with
probability 1 − o(1)), then the square product I is composed of y

1+o(1)
0 = J0(x)1/2+o(1)

numbers ai (which will be made more precise in [4]).
Schroeppel upper bound, T ≤ (1 + o(1))J0(x) follows by showing that one expects

to have more than π(y0) y0-smooth integers amongst a1, a2, . . . , aT , which guarantees a
square product. To see this, create a matrix over F2 whose columns are indexed by the
primes up to y0, and whose (i, p)th entry is given by the exponent on p in the factorization
of ai, for each y0-smooth ai. Then a square product is equivalent to a linear dependence
over F2 amongst the corresponding rows of our matrix: we are guaranteed such a linear
dependence once the matrix has more than π(y0) rows. Of course it might be that we
obtain a linear dependence when there are far fewer rows; however, in section 3.1, we
give a crude model for this process which suggests that we should not expect there to
be a linear dependence until we have very close to π(y0) rows

Schroeppel’s approach is not only good for theoretical analysis, in practice one
searches among the ai for y0-smooth integers and hunts amongst these for a square
product, using linear algebra in F2 on the primes’ exponents. Computing specialists
have also found that it is easy and profitable to keep track of ai of the form siqi, where
si is y0-smooth and qi is a prime exceeding y0; if both ai and aj have exactly the same
large prime factor qi = qj then their product is a y0-smooth integer times a square, and
so can be used in our matrix as an extra smooth number. This is called the large prime
variation, and the upper bound in Theorem 1.2 is obtained in section 4 by computing
the limit of this method. (The best possible constant is actually a tiny bit smaller than
3/4.)

One can also consider the double large prime variation in which one allows two largish
prime factors so that, for example, the product of three ais of the form pqs1, prs2, qrs3 can
be used as an extra smooth number. Experience has shown that each of these variations
has allowed a small speed up of various factoring algorithms (though at the cost of some
non-trivial extra programming), and a long open question has been to formulate all of the
possibilities for multi-large prime variations and to analyze how they affect the running
time. Sorting out this combinatorial mess is the most difficult part of our paper. To our
surprise we found that it can be described in terms of the theory of Huisimi cacti graphs
(see section 6). In attempting to count the number of such smooth numbers (including
those created as products of smooths times a few large primes) we run into a subtle
convergence issue. We believe that we have a power series which yields the number of
smooth numbers, created independently from a1, . . . , aJ , simply as a function of J/J0; if
it is correct then we obtain the upper bound in our conjecture.

In the graphs constructed here (which lead to the Husimi graphs), the vertices corre-
spond to the aj ’s, and the edges to common prime factors which are > y0. In the random
hypergraphs considered in [4] the vertices correspond to the prime factors which are > y0

and the hyperedges, which are presented as subsets of the set of vertices, correspond to
the prime factors of each aj , which divide aj to an odd power.

In [4] we were able to understand the speed up in running time using the k-large
prime variation for each k ≥ 1. We discuss the details of the main results of this
work, along with some numerics, in section 8. We also compare, there, these theoretical
findings, with the speed-ups obtained using large prime variations by the researchers
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who actually factor numbers. Their findings and our predictions differ significantly and
we discuss what might contribute to this.

When our process terminates (at time T ) we have some subset I of a1, ..., aT , including
aT , whose product equals a square.4 If Schroeppel’s argument comes close to reflecting
the right answer then one would guess that that ai’s in the square product are typically
“smooth”. In section 3.2 we prove that they will all be J2

0 -smooth with probability
1− o(1), which we improve to

y2
0 exp((2 + ε)

√
log y0 log log y0) − smooth.

in [4], Theorem 2. We guess that this may be improvable to y1+ε
0 -smooth for any fixed

ε > 0.
Pomerance’s main goal in enunciating the random squares problem was to provide

a model that would prove useful in analyzing the running time of factoring algorithms,
such as the quadratic sieve. In section 7 we will analyze the running time of Pomerance’s
random squares problem showing that the running time will be inevitably dominated by
finding the actual square product once we have enough integers. Hence to optimize the
running time of the quadratic sieve we look for a square dependence among the y-smooth
integers with y significantly smaller than y0, so that Pomerance’s problem is not quite
so germane to factoring questions as it had at first appeared.

This article uses methods from several different areas not usually associated with fac-
toring questions: the first and second moment methods from probabilistic combinatorics,
Husimi graphs from statistical physics, Lagrange inversion from algebraic combinatorics,
as well as comparative estimates on smooth numbers using precise information on saddle
points.

2 Smooth numbers

In this technical section we state some sharp results comparing the number of smooth
numbers up to two different points (which are proved in [4]). The key idea, which we
took from [10], is that such ratios are easily determined because one can compare very
precisely associated saddle points – this seems to be the first time this idea has been
used in the context of analyzing factoring algorithms.

2.1 Classical smooth number estimates

From [10] we have that the estimate

Ψ(x, y) = xρ(u)
{

1 + O

(
log(u + 1)

log y

)}
as x →∞ where x = yu, (3)

holds in the range
exp

(
(log log x)2

) ≤ y ≤ x, (4)

4Note that I is unique, else if we have two such subsets I and J then (I ∪ J) \ (I ∩ J) is also a set
whose product equals a square, but does not contain aT , and so the process would have stopped earlier
than at time T .
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where ρ(u) = 1 for 0 ≤ u ≤ 1, and where

ρ(u) =
1
u

∫ u

u−1
ρ(t) dt for all u > 1.

This function ρ(u) satisfies

ρ(u) =
(

e + o(1)
u log u

)u

= exp(−(u + o(u)) log u); (5)

and so
Ψ(x, y) = x exp(−(u + o(u)) log u). (6)

Now let

L := L(x) = exp

(√
1
2

log x log log x

)
.

Then, using (6) we deduce that for β > 0,

Ψ(x, L(x)β+o(1)) = xL(x)−1/β+o(1). (7)

From this one can easily deduce that

y0(x) = L(x)1+o(1), and J0(x) = y
2−{1+o(1)}/ log log y0

0 = L(x)2+o(1), (8)

where y0 and J0 are as in the introduction (see (1)). From these last two equations we
deduce that if y = y

β+o(1)
0 , where β > 0, then

Ψ(x, y)/y

Ψ(x, y0)/y0
= y

2−β−β−1+o(1)
0 .

For any α > 0, one has

Ψ(x, y) ≤
∑
n≤x

P (n)≤y

(x/n)α ≤ xα
∏

p≤y

(
1− 1

pα

)−1
, (9)

which is minimized by selecting α = α(x, y) to be the solution to

log x =
∑

p≤y

log p

pα − 1
. (10)

We show in [4] that for y = L(x)β+o(1) = y
β+o(1)
0 we have

y1−α ∼ β−2 log y ∼ β−1 log y0. (11)

Moreover, by [10, Theorem 3], we have

Ψ
(x

d
, y

)
=

1
dα(x,y)

Ψ(x, y)
{

1 + O

(
1
u

+
log y

y

)}
, when 1 ≤ d ≤ y ≤ x

d
. (12)

By iterating this result we can deduce (see [4]) the following:
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Proposition 2.1 Throughout the range (4), for any 1 ≤ d ≤ x, we have

Ψ
(x

d
, y

)
≤ 1

dα(x,y)
Ψ(x, y){1 + o(1)},

where α is the solution to (10).

Now Lemma 2.4 of [4] gives the following more accurate value for y0:

log y0 = log L(x)

(
1 +

log3 x− log 2
2 log2 x

+ O

((
log3 x

log2 x

)2
))

. (13)

It is usual in factoring algorithms to optimize by taking ψ(x, y) to be roughly x/y:

Lemma 2.2 If ψ(x, y) = x/y1+o(1/ log log y) then

log y = log y0

(
1− 1 + o(1)

log2 x

)
.

Proof. By (3) and (5) we have

u(log u + log log u− 1 + o(1)) = log y

(
1 + o

(
1

log log y

))
,

and from here it is a simple exercise to show that

u =
log y

log log y

(
1 +

1 + o(1)
log log y

)
.

Substituting u = (log x)/(log y) and solving we obtain

log y = log L(x)
(

1 +
log3 x− log 2− 2 + o(1)

2 log2 x

)
,

from which our result follows using (13). ¤

3 Some simple observations

3.1 A heuristic analysis

Let M = π(y) and
p1 = 2 < p2 = 3 < . . . < pM

be the primes up to y. Any y-smooth integer

pe1
1 pe2

2 . . . peM
M

gives rise to the element (e1, e2, . . . eM ) of the vector space FM
2 . The probability that

any given element of FM
2 arises from Pomerance’s problem (corresponding to a y-smooth

7



value of ai) varies depending on the entries in that element. Pomerance’s problem can
be rephrased as: Let y = x. Select elements v1, v2, . . . of FM

2 , each with some specific
probability (as above), and stop at vT as soon as v1, v2, . . . , vT are linearly dependent.
The difficulty in this version is in quantifying the probabilities that each different v ∈ FM

2

occurs, and then manipulating those probabilities in a proof since they are so basis
dependent.

As a first model we will work with an approximation to this question that avoids
these difficulties: Now our problem will be to determine the distribution of T when each
element of FM

2 is selected with probability 1/2M . We hope that this model will help us
gain some insight into Pomerance’s question.

If v1, v2, .., v`−1 are linearly independent they generate a subspace S` of dimension
` − 1, which contains 2`−1 elements (if 1 ≤ ` ≤ M + 1). Then the probability that
v1, v2, .., v` are linearly dependent is the same as the probability that v` belongs to S`,
which is 2`−1/2M . Thus the expectation of T is

M+1∑

`=1

`
2`−1

2M

`−1∏

i=1

(
1− 2i−1

2M

)
→

∏

i≥1

(
1− 1

2i

) 


M∑

j=0

(M + 1− j)
2j

j∏

i=1

(
1− 1

2i

)−1



= M − .60669515 . . . as M →∞.

(By convention, empty products have value 1.) Therefore |T −M | has expected value
O(1). Furthermore,

Prob(|T −M | > n) =
∑

`≥n+1

Prob(T = M − `) <
∑

`≥n+1

2−`−1 = 2−n−1,

for each n ≥ 1, so that if φ(t) →∞ as t →∞ then

Prob(T ∈ [M − φ(M), M ]) = 1 − o(1).

Hence this simplified problem has a very sharp transition function, suggesting that this
might be so in Pomerance’s problem.

3.2 No large primes, I

Suppose that we have selected integers a1, a2, ..., aT at random from [1, x], stopping
at T since there is a non-empty subset of these integers whose product is a square.
Let q be the largest prime that divides this square. Then either q2 divides one of
a1, a2, ..., aT , or q divides at least two of them. The probability that p2 divides at least
one of a1, a2, ..., aT , for a given prime p, is ≤ T/p2; and the probability that p divides at
least two of a1, a2, ..., aT is ≤ (

T
2

)
/p2. Thus

Prob(q > T 2) ¿ T 2
∑

p>T 2

1
p2

¿ 1
log T

,

by the Prime Number Theorem.
By Pomerance’s result we know that T → ∞ with probability 1 + o(1); and so the

largest prime that divides the square product is ≤ T 2 with probability 1− o(1). We will
improve this result later by more involved arguments.
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4 Proof of the upper bound on T in Theorem 1.2

Our goal in this section is to prove that

Prob(T < (3/4)J0(x)) = 1− o(1),

as x →∞.
We use the following notation throughout. Given a sequence

a1, . . . , aJ ≤ x

of randomly chosen positive integers, let

p1 = 2 < p2 = 3 < . . . < pπ(x)

denote the primes up to x, and construct the J-by-π(x) matrix A, which we take mod
2, where

ai =
∏

1≤j≤π(x)

p
Ai,j

j .

Then, a given subsequence of the ai has square product if the corresponding row vectors
of A sum to the 0 vector modulo 2; and, this happens if and only if rank(A) < J . Here,
and henceforth, the rank is always the F2-rank.

4.1 Schroeppel’s argument

Schroeppel’s idea was to focus only on those rows corresponding to y0-smooth integers
so that they have no 1’s beyond the π(y0)th column. If we let S(y0) denote the set of all
such rows, then Schroeppel’s approach amounts to showing that

|S(y0)| > π(y0)

holds with probability 1−o(1) for J = (1+ε)J0, where J0 and y0 are as defined in (1). If
this inequality holds, then the |S(y0)| rows are linearly dependent mod 2, and therefore
some subset of them sums to the 0 vector mod 2.

Although Pomerance [15] gave a complete proof that Schroeppel’s idea works, it does
not seem to be flexible enough to be easily modified when we alter Schroeppel’s argument,
so we will give our own proof, seemingly more complicated but actually requiring less
depth: Define the independent random variables Y1, Y2, . . . so that Yj = 1 if aj is y-
smooth, and Yj = 0 otherwise, where y will be chosen later. Let

N = Y1 + · · ·+ YJ ,

which is the number of y-smooth integers amongst a1, ..., aJ . The probability that any
such integer is y-smooth, that is that Yj = 1, is Ψ(x, y)/x; and so,

E(N) =
Jψ(x, y)

x
.
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Since the Yi are independent, we also have

V (N) =
∑

i

(E(Y 2
i )− E(Yi)2) =

∑

i

(E(Yi)− E(Yi)2) ≤ Jψ(x, y)
x

.

Thus, selecting J = (1 + ε)xπ(y)/Ψ(x, y), we have, with probability 1 + oε(1), that

N = (1 + ε + o(1))π(y) > π(y).

Therefore, there must be some non-empty subset of the ai’s whose product is a square.
Taking y = y0 we deduce that

Prob(T < (1 + ε)J0(x)) = 1− oε(1).

Remark. One might alter Schroeppel’s construction to focus on those rows having only
entries that are 0 (mod 2) beyond the π(y0)th column. These rows all correspond to
integers that are a y0-smooth integer times a square. The number of additional such
rows equals

∑
d>1

p(d)>y0

Ψ
( x

d2
, y0

)
≤

∑

y0<d≤y2
0

Ψ
( x

d2
, y0

)
+

∑

d>y2
0

x

d2
¿ Ψ(x, y0)

y
1+o(1)
0

by Proposition 2.1, the prime number theorem, (11) and (7), respectively, which one
readily sees are too few to significantly affect the above analysis. Here and henceforth,
p(n) denotes the smallest prime factor of n, and later on we will use P (n) to denote the
largest prime factor of n.

4.2 The single large prime variation

If, for some prime p > y, we have ps1, ps2, . . . , psr amongst the ai, where each sj is
y-smooth, then this provides us with precisely r−1 multiplicatively independent pseudo-
smooths, (ps1)(ps2), (ps1)(ps3), . . . , (ps1)(psr). We will count these using the combina-
torial identity

r − 1 =
∑

I⊂{1,...,r}
|I|≥2

(−1)|I|,

which fits well with our argument. Hence the expected number of smooths and pseudo-
smooths amongst a1, . . . , aJ equals

JΨ(x, y)
x

+
∑

I⊂{1,...,J}
|I|≥2

(−1)|I| Prob(ai = psi ∀i ∈ I, P (si) ≤ y < p, p prime)

=
JΨ(x, y)

x
+

∑

k≥2

(
J

k

)
(−1)k

∑
p>y

(
Ψ(x/p, y)

x

)k

. (14)
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Using (12) we have, by the prime number theorem, that

∑
p>y

(
Ψ(x/p, y)
Ψ(x, y)

)k

∼
∑
p>y

1
pαk

∼ y1−αk

(αk − 1) log y
∼ 1

(k − 1)π(y)k−1

using (11) for y ³ y0. Hence the above becomes, letting J = ηxπ(y)/Ψ(x, y),

∼

η +

∑

k≥2

(−η)k

k!(k − 1)


π(y). (15)

(One needs to be a little careful here since the accumulated error terms might get large
as k →∞. To avoid this problem we can replace the identity (14) by the usual inclusion-
exclusion inequalities; that is the partial sum up to k even is an upper bound, and the
partial sum up to k odd is a lower bound. Since these converge as k →∞, independently
of x, we recover (15).) One can compute that the constant in (15) equals 1 for η =
.74997591747934498263 . . .; or one might observe that this expression is > 1.00003π(y)
when η = 3/4.

4.3 From expectation to probability

Proposition 4.1 The number of smooth and pseudosmooth integers amongst a1, a2, . . . , aJ

with J = ηJ0 is given by (15), with probability 1− o(1), as x →∞.

Hence, with probability 1 − o(1), we have that the number of linear dependencies
arising from the single large prime variation is (15) for J = ηJ0(x) with y = y0 as x →∞.
This is > (1 + ε)π(y0) for J = (3/4)J0(x) with probability 1− o(1), as x →∞, implying
the upper bound on T in Theorem 1.2.

Proof of Proposition 4.1. Suppose that a1, ..., aJ ≤ x have been chosen randomly. For
each integer r ≥ 2 and subset S of {1, ..., J} we define a random variable Xr(S) as
follows: Let Xr(S) = 1 if each as, s ∈ S equals p times a y-smooth for the same prime
p > y, and let Xr(S) = 0 otherwise. Therefore if

Yr =
∑

S⊂{1,...,J}
|S|=r

Xr(S),

then we have seen that
E(Yr) ∼ ηr

r!(r − 1)
π(y).

Hence each

E(Xr(S)) ∼
(

J

r

)−1 ηr

r!(r − 1)
π(y),

for every S ⊂ {1, ..., J}, since each of the Xr(S) have the same probability distribution.
Now, if S1 and S2 are disjoint, then Xr(S1) and Xr(S2) are independent, so that

E(Xr(S1)Xr(S2)) = E(Xr(S1))E(Xr(S2)).
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If S1 and S2 are not disjoint and both Xr(S1) and Xr(S2) equal 1, then XR(S) = 1
where S = S1 ∪ S2 and R = |S|. We just saw that

E(XR(S)) ∼
(

J

R

)−1 ηR

R!(R− 1)
π(y).

Hence if |S1 ∩ S2| = j then

E(Xr(S1)Xr(S2)) ∼
(

J

2r − j

)−1 η2r−j

(2r − j)!(2r − j − 1)
π(y).

Therefore

E(Y 2
r )− E(Yr)2 =

∑
S1,S2⊂{1,...,J}
|S1|=|S2|=r

E(Xr(S1)Xr(S2))− E(Xr(S1))E(Xr(S2))

. π(y)
r∑

j=1

(
J

2r − j

)−1 η2r−j

(2r − j)!(2r − j − 1)

∑
S1,S2⊂{1,...,J}
|S1|=|S2|=r
|S1∩S2|=j

1

= π(y)
r∑

j=1

η2r−j

(2r − j − 1)j!(r − j)!2
≤ (1 + η2r−1)π(y).

Hence by Tchebychev’s inequality we deduce that

Prob(|Yr − E(Yr)| > εE(Yr)) ¿r
E(Y 2

r )− E(Yr)2

ε2E(Yr)2
¿r

1
ε2π(y)

,

so that Yr ∼ E(Yr) with probability 1− o(1). ¤

5 The lower bound on T ; a sketch

We prove that
Prob(T > (π/4)(e−γ − o(1))J0(x)) = 1− o(1),

in [4], by showing that the expected number of square products amongst a1, . . . , aJ is
o(1), for J(x) = (π/4)(e−γ − o(1))J0(x).

By considering the common divisors of all pairs of integers from a1, . . . , aJ we be-
gin by showing that the probability that a square product has size k, with 2 ≤ k ≤
log x/2 log log x, is O(J2 log x/x) provided J < xo(1).

Next we shall write ai = bidi where P (bi) ≤ y and where either di = 1 or p(di) > y
(here, p(n) denotes the smallest prime divisor of n), for 1 ≤ i ≤ k. If a1, . . . , ak are
chosen at random from [1, x] then

Prob(a1 . . . ak ∈ Z2) ≤ Prob(d1 . . . dk ∈ Z2)

=
∑

d1,...,dk≥1

d1...dk∈Z2
di=1 or p(di)>y

k∏

i=1

Ψ(x/di, y)
x

12



≤
(
{1 + o(1)}Ψ(x, y)

x

)k ∑

n=1 or p(n)>y

τk(n2)
n2α

, (16)

by Proposition 2.1. Out of J = ηJ0 integers, the number of k-tuples is
(
J
k

) ≤ (eJ/k)k;
and so the expected number of k-tuples whose product is a square is

≤
(

(e + o(1))
ηy

k log y0

Ψ(x, y)/y

Ψ(x, y0)/y0

)k ∏
p>y

(
1 +

τk(p2)
p2α

+
τk(p4)
p4α

+ . . .

)
. (17)

For log x/2 log log x < k ≤ y
1/4
0 we take y = y

1/3
0 and show that the quantity in

(17) is < 1/x2.
For y

1/4
0 ≤ k = yβ

0 ≤ J = ηJ0 ≤ J0 we choose y so that [k/C] = π(y), with C
sufficiently large. One can show that the quantity in (17) is < ((1 + ε)4ηeγ/π)k and is
significantly smaller unless β = 1 + o(1). This quantity is < 1/x2 since η < 4πe−γ − ε
and the result follows.

This proof yields further useful information: If either J < (π/4)(e−γ − o(1))J0(x), or
if k < y

1−o(1)
0 or k > y

1+o(1)
0 , then the expected number of square products with k > 1 is

O(J0(x)2 log x/x), whereas the expected number of squares in our sequence is ∼ J/
√

x.
This justifies the remarks immediately after the statement of Theorem 1.2.

Moreover with only minor modifications we showed the following in [4]: Let y1 =
y0 exp((1+ε)

√
log y0 log log y0) and write each ai = bidi where P (bi) ≤ y = y1 < p(di). If

di1 . . . dil is a subproduct which equals a square n2, but such that no subproduct of this
is a square, then, with probability 1− o(1), we have l = o(log y0) and n is a squarefree
integer composed of precisely l − 1 prime factors, each ≤ y2, where n ≤ y2l.

6 A method to examine all smooth products

In proving his upper bound on T , Schroeppel worked with the y0-smooth integers
amongst a1, . . . , aT (which correspond to rows of A with no 1’s in any column that
represents a prime > y0), and in our improvement in section 4.2 we worked with integers
that have no more than one prime factor > y0 (which correspond to rows of A with at
most one 1 in the set of columns representing primes > y0). We now work with all of
the rows of A, at the cost of significant complications.

Let Ay0 be the matrix obtained by deleting the first π(y0) columns of A. Note that
the row vectors corresponding to y0-smooth numbers will be 0 in this new matrix. If

rank(Ay0) < J − π(y0), (18)

then
rank(A) ≤ rank(Ay0) + π(y0) < J,

which therefore means that the rows of A are dependent over F2, and thus the sequence
a1, ..., aJ contains a square dependence.

13



So let us suppose we are given a matrix A corresponding to a sequence of aj ’s. We
begin by removing (extraneous) rows from Ay0 , one at a time: that is, we remove a row
containing a 1 in its lth column if there are no other 1s in the lth column of the matrix
(since this row cannot participate in a linear dependence). This way we end up with a
matrix B in which no column contains exactly one 1, and for which

r(Ay0)− rank(Ay0) = r(B)− rank(B)

(since we reduce the rank by 1 each time we remove a row). Next we partition the rows
of B into minimal subsets, in which the primes involved in each subset are disjoint from
the primes involved in the other subsets (in other words, if two rows have a 1 in the same
column then they must belong to the same subset). The ith subset forms a submatrix,
Si, of rank `i, containing ri rows, and then

r(B)− rank(B) =
∑

i

(ri − `i).

We will define a power series f(η) for which we believe that

E

(∑

i

(ri − `i)

)
∼ f(η)π(y0) (19)

when J = (η + o(1))J0, and we can show that

lim
η→η−0

f(η) = 1, (20)

where η0 := e−γ . Using the idea of section 4.3, we will deduce in section 6.9 that if
(19) holds then ∑

i

(ri − `i) ∼ f(η)π(y0) (21)

holds with probability 1 − o(1), and hence (18) holds with probability 1 − o(1) for
J = (η0 + o(1))J0. That is we can replace the upper bound 3/4 in Theorem 1.2 by e−γ .

The simple model of section 3.1 suggests that A will not contain a square dependence
until we have ∼ π(y0) smooth or pseudo-smooth numbers; hence we believe that one can
replace the lower bound (π/4)e−γ in Theorem 1.2 by e−γ . This is our heuristic in support
of Conjecture 1.1 .

6.1 The submatrices

Let MR denote the matrix composed of the set R of rows (allowing multiplicity), remov-
ing columns of 0’s. We now describe the matrices MSi for the submatrices Si of B from
the previous subsection.

For an r(M)-by-`(M) matrix M we denote the (i, j)th entry ei,j ∈ F2 for 1 ≤ i ≤
r, 1 ≤ j ≤ `. We let

N(M) =
∑

i,j

ei,j

14



denote the number of 1’s in M , and

∆(M) := N(M)− r(M)− `(M) + 1.

We denote the number of 1’s in column j by

mj =
∑

i

ei,j ,

and require each mj ≥ 2.5 We also require that M is transitive. That is, for any j, 2 ≤
j ≤ ` there exists a sequence of row indices i1, . . . , ig, and column indices j1, . . . , jg−1,
such that

ei1,1 = eig ,j = 1; and, eih,jh
= eih+1,jh

= 1 for 1 ≤ h ≤ g − 1.

In other words we do not study M if, after a permutation, it can be split into a block
diagonal matrix with more than one block, since this would correspond to independent
squares.

It is convenient to keep in mind two reformulations:
Integer version: Given primes p1 < p2 < . . . < p`, we assign, to each row, a squarefree
integer

ni =
∏

1≤j≤`

p
ei,j

j , for 1 ≤ i ≤ r.

Graph version: Take a graph G(M) with r vertices, where vi is adjacent to vI with an
edge of colour pj if pj divides both ni and nI (or, equivalently, ei,j = eI,j = 1). Notice
that M being transitive is equivalent to the graph G(M) being connected, which is much
easier to visualize.

Now we define a class of matrices Mk, where M ∈Mk if M is as above, is transitive
and ∆(M) = k. Note that the “matrix” with one row and no columns is in M0 (in the
“integer version” this corresponds to the set with just the one element, 1, and in the
graph version to the graph with a single vertex and no edges).

6.2 Isomorphism classes of submatrices

Let us re-order the rows of M so that, in the graph theory version, each new vertex
connects to the graph that we already have, which is always possible as the overall graph
is connected. Let

`I = #{j : ∃i ≤ I with ei,j = 1},
the number of columns with a 1 in or before the Ith row, and

NI :=
∑

i≤I, j≤`

ei,j ,

5Else the prime corresponding to that column cannot participate in a square product.
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the number of 1’s up to, and including in, the Ith row. Define

∆I = NI − I − `I + 1,

so that ∆r = ∆(M).
Now N1 = `1 and therefore ∆1 = 0. Let us consider the transition when we add in

the (I + 1)th row. The condition that each new row connects to what we already have
means that the number of new colours (that is, columns with a non-zero entry) is less
than the number of 1’s in the new row, that is

`I+1 − `I ≤ NI+1 −NI − 1;

and so

∆I+1 = NI+1 − I − `I+1 = NI − I − `I + (NI+1 −NI)− (`I+1 − `I)
≥ NI − I − `I + 1
= ∆I .

Therefore
∆(M) = ∆r ≥ ∆r−1 ≥ . . . ≥ ∆2 ≥ ∆1 = 0. (22)

6.3 Restricting to the key class of submatrices

Two matrices are said to be “isomorphic” if one can be obtained from the other by
permuting rows and columns. In this subsection we estimate how many submatrices of
Ay0 are isomorphic to a given matrix M , in order to exclude from our considerations all
those M that occur infrequently.

Proposition 6.1 Fix M ∈Mk. The expected number of submatrices S of Ay0 for which
MS is isomorphic to M is

∼ ηrπ(y0)1−k

|AutRows(M)|
∏

1≤j≤`

1
νj

, (23)

where νj :=
∑`

i=j(mi − 1).

Note that we are not counting here the number of times a component Si is isomorphic
to M , but rather how many submatrices of Ay0 are isomorphic to M .

Since η ≤ 1, the quantity in (23) is bounded if k ≥ 1, but is a constant times π(y0)
if k = 0. This is why we will restrict our attention to M ∈ M0, and our goal becomes
to prove that

E


 ∑

i: Si∈M
(ri − `i)


 > π(y0) (24)

in place of (19), where henceforth we write M = M0.
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Proof. The expected number of times we get a set of integers of the form
∏

1≤j≤` p
ei,j

j

times a y0-smooth times a square, for i = 1, ..., r, within our sequence of integers a1, ..., aJ

is

∼
(

J

r

)
|OrbitRows(M)|

∏

1≤i≤r

Ψ∗(x/
∏

1≤j≤` p
ei,j

j , y0)
x

, (25)

where by OrbitRows(M) we mean the set of distinct matrices produced by permuting the
rows of M , and Ψ∗(X, y) := #{n = mr2 : P (m) ≤ y < p(r)} which is insignificantly
larger than Ψ(X, y) (as we saw at the end of section 4.1). Since r is fixed and J tends
to infinity, we have (

J

r

)
∼ Jr

r!
;

and we know that6

r! = |OrbitRows(M)| · |AutRows(M)|
where AutRows(M) denotes the number of ways to obtain exactly the same matrix by per-
muting the rows (this corresponds to permuting identical integers that occur). Therefore
(25) is

∼ Jr

|AutRows(M)|
∏

1≤i≤r

Ψ(x/
∏

1≤j≤` p
ei,j

j , y0)
x

∼ 1
|AutRows(M)|

(
JΨ(x, y0)

x

)r ∏

1≤j≤`

1
p

mjα
j

, (26)

where mj =
∑

i ei,j ≥ 2, by (12). Summing the last quantity in (26) over all y0 < p1 <
p2 < . . . < p`, we obtain, by the prime number theorem,

∼ (ηπ(y0))r

|AutRows(M)|
∫

y0<v1<v2<...<v`

∏

1≤j≤`

dvj

v
mjα
j log vj

∼ ηrπ(y0)r+`−Pj mj

|AutRows(M)|
∫

1<t1<t2<...<t`

∏

1≤j≤`

dtj

t
mj

j

using the approximation log vj ∼ log y0 (because this range of values of vj gives the main
contribution to the integral), and the fact that vα

j ∼ vj/ log y0 for vj in this range. The
result follows by making the substitution tj = vj/y0.

6.4 Properties of M ∈M := M′

Lemma 6.2 Suppose that M ∈ M := M′. For each row of M , other than the first,
there exists a unique column which has a 1 in that row as well as an earlier row. The
last row of M contains exactly one 1.

6This is a consequence of the “Orbit-Stabilizer Theorem” from elementary group theory. It follows
from the fact that the cosets of AutRows(M) in the permutation group on the r rows of M , correspond
to the distinct matrices (orbit elements) obtained by performing row interchanges on M .
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Proof. For each M ∈M, we have ∆j = 0 for each j ≥ 0 by (22) so that

`j+1 − `j = Nj+1 −Nj − 1.

That is, each new vertex connects with a unique colour to the set of previous vertices,
which is the first part of our result.7 The second part comes from noting that the last
row cannot have a 1 in a column that has not contained a 1 in an earlier row of M . ¤

Lemma 6.3 If M ∈M then all cycles in its graph, G(M), are monochromatic.

Proof. If not, then consider a minimal cycle in the graph, where not all the edges are of
the same color. We first show that, in fact, each edge in the cycle has a different color.
To see this, we start with a cycle where not all edges are of the same color, but where at
least two edges have the same color. Say we arrange the vertices v1, ..., vk of this cycle
so that the edge (v1, v2) has the same color as (vj , vj+1), for some 2 ≤ j ≤ k − 1, or
the same color as (vk, v1), and there are no two edges of the same colour in-between. If
we are in the former case, then we reduce to the smaller cycle v2, v3, ..., vj , where not
all edges have the same color; and, if we are in the latter case, we reduce to the smaller
cycle v2, v3, ..., vk, where again not all the edges have the same color. Thus, if not all of
the edges of the cycle have the same color, but the cycle does contain more than one
edge of the same color, then it cannot be a minimal cycle.

Now let I be the number of vertices in our minimal cycle of different colored edges,
and reorder the rows of M so that this cycle appears as the first I rows.8 Then

NI ≥ 2I + (`I − I) = `I + I.

The term 2I accounts for the fact that each prime corresponding to a different colored
edge in the cycle must divide at least two members of the cycle, and the `I − I accounts
for the remaining primes that divide members of the cycle (that don’t correspond to the
different colored edges). This then gives ∆I ≥ 1; and thus by (22) we have ∆(M) ≥ 1,
a contradiction. We conclude that every cycle in our graph is monochromatic. ¤

Lemma 6.4 Every M ∈M has rank `(M).

Proof by induction on `. For ` = 0, 1 this is trivial. Otherwise, as there are no cycles the
graph must end in a “leaf”; that is a vertex of degree one. Suppose this corresponds to
row r and color `. We now construct a new matrix M ′ which is matrix M less column
`, and any rows that only contained a 1 in the `th column. The new graph now consists
of m` − 1 disjoint subgraphs, each of which corresponds to an element of M. Thus the
rank of M is given by 1 (corresponding to the rth row, which acts as a pivot element
in Gaussian elimination on the `th column) plus the sum of the ranks of new connected
subgraphs. By the induction hypothesis, they each have rank equal to the number of
their primes, thus in total we have 1 + (`− 1) = `, as claimed. ¤

7Hence we confirm that ` = N − (r − 1), since the number of primes involved is the total number of
1’s less the unique “old prime” in each row after the first.

8This we are allowed to do, because the connectivity of successive rows can be maintained, and because
we will still have ∆(M) = 0 after this permutation of rows.
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6.5 An identity, and inclusion-exclusion inequalities, for M.

Proposition 6.5 If MR ∈M then
∑
S⊂R

MS∈M

(−1)N(S) = r(M)− rank(M). (27)

Furthermore, if N ≥ 2 is an even integer then
∑

S⊂R,N(S)≤N
MS∈M

(−1)N(S) ≥ r(M)− rank(M), (28)

and if N ≥ 3 is odd then
∑

S⊂R,N(S)≤N
MS∈M

(−1)N(S) ≤ r(M)− rank(M). (29)

Proof by induction on |R|. It is easy to show when R has just one row and that has no
1’s, and when |R| = 2, so we will assume that it holds for all R satisfying |R| ≤ r − 1,
and prove the result for |R| = r.

Let N be the set of integers that correspond to the rows of R
By Lemma 3 we know that the integer in N which corresponds to the last row of

M must be a prime, which we will call p`. Note that p` must divide at least one other
integer in N , since MR ∈M.

Case 1: p` divides at least three elements from our set.

We partition R into three subsets: R0, the rows without a 1 in the `th column; R1,
the rows with a 1 in the `th column, but no other 1s (that is, rows which correspond to
the prime p`); and R2, the rows with a 1 in the `th column, as well as other 1s. Note
that |R1| ≥ 1 and |R1|+ |R2| ≥ 3 by hypothesis.

Write each S ⊂ R with MS ∈ M as S0 ∪ S1 ∪ S2 where Si ⊂ Ri. If we fix S0 and
S2 with |S2| ≥ 2 then S0 ∪ S2 ∈ M if and only if S0 ∪ S1 ∪ S2 ∈ M for any S1 ⊂ R1.
Therefore the contribution of all of these S to the sum in (27) is

(−1)N(S0)+N(S2)
∑

S1⊂R1

(−1)|S1| = (−1)N(S0)+N(S2)(1− 1)|R1| = 0 (30)

Now consider those sets S with |S2| = 1. In this case we must have |S1| ≥ 1 and
equally we have S0 ∪ {p`} ∪ S2 ∈ M if and only if S0 ∪ S1 ∪ S2 ∈ M for any S1 ⊂ R1

with |S1| ≥ 1. Therefore the contribution of all of these S to the sum in (27) is

(−1)N(S0)+N(S2)
∑

S1⊂R1
|S1|≥1

(−1)|S1| = (−1)N(S0)+N(S2)((1− 1)|R1| − 1)

= (−1)N(S0∪{p`}∪S2). (31)
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Regardless of whether |S2| = 1 or |S2| ≥ 2, we get that if we truncate the sums (30)
or (31) to all those S1 ⊂ R1 with

N(S1) = |S1| ≤ N −N(S0)−N(S2),

then the total sum is≤ 0 if N is odd, and is≥ 0 if N is even; furthermore, note that we get
that these truncations are 0 in two cases: If N−N(S0)−N(S2) ≤ 0 (which means that the
above sums are empty, and therefore 0 by convention), or if N−N(S0)−N(S2) ≥ N(R1)
(which means that we have the complete sum over all S1 ⊂ R1).

It remains to handle those S where |S2| = 0. We begin by defining certain sets Hj

and Tj : If the elements of R2 correspond to the integers h1, . . . , hk then let Hj be the
connected component of the subgraph containing hj , of the graph obtained by removing
all rows divisible by p` except hj . Let Tj = Hj ∪ {p`}. Note that if S2 = {hj} then
S0 ∪ {p`} ∪ S2 ⊂ Tj (in the paragraph immediately above).

Note that if S has |S2| = 0, then S = S0 ⊂ Tj for some j (since the graph of S is
connected), or S = S1 with |S| ≥ 2. The contribution of those S = S1 with |S| ≥ 2 to
the sum in (27) is

∑
S1⊂R1
|S1|≥2

(−1)|S1| = (1− 1)|R1| − (1− |R1|) = |R1| − 1.

Furthermore, if we truncate this sum to all those S1 satisfying

N(S1) = |S1| ≤ N,

then the sum is ≥ |R1| − 1 if N ≥ 2 is even, and the sum is ≤ |R1| − 1 if N ≥ 3 is odd.

Finally note that if S ⊂ Tj with MS ∈ M then either |S2| = 0 or S = S0 ∪ {p`, hj}
and therefore, combining all of this information,

∑
S⊂R

MS∈M

(−1)N(S) = |R1| − 1 +
k∑

j=1

∑
S⊂Tj

MS∈M

(−1)N(S) = |R1| − 1 +
k∑

j=1

(r(Tj)− `(Tj))

by the induction hypothesis (as each |Tj | < |M |). Also by the induction hypothesis,
along with what we worked out above for N even and odd, in all possibilities for |S2|
(i.e. |S2| = 0, 1 or exceeds 1), we have that for N ≥ 3 odd,

∑
S⊂R, N(S)≤N

MS∈M

(−1)N(S) ≤ |R1| − 1 +
k∑

j=1

(r(Tj)− `(Tj));

and for N ≥ 2 even,

∑
S⊂R, N(S)≤N

MS∈M

(−1)N(S) ≥ |R1| − 1 +
k∑

j=1

(r(Tj)− `(Tj)).
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The Tj less the rows {p`} is a partition of the rows of M less the rows {p`}, and so
∑

j

(r(Tj)− 1) = r(M)− |R1|.

The primes in Tj other than p` is a partition of the primes in M other than p`, and so
∑

j

(`(Tj)− 1) = `(M)− 1.

Combining this information gives (27), (28), and (29).

Case 2 : p` divides exactly two elements from our set.

Suppose these two elements are nr = p` and nr−1 = p`q for some integer q. If q = 1
this is our whole graph and (27), (28) and (29) all hold, so we may assume q > 1. If
nj 6= q for all j, then we create M1 ∈ M with r − 1 rows, the first r − 2 the same, and
with nr−1 = q. We have

N(M1) = N(M)− 2, r(M1) = r(M)− 1, and `(M1) = `(M)− 1.

We claim that there is a 1-1 correspondence between the subsets S ⊂ R(M) with
MS ∈M and the subsets T ⊂ R(M1) with (M1)T ∈M. The key observation to make is
that p` ∈ S (ie row r) if and only if p`q ∈ S (ie row r− 1), since MS ∈M. Thus if rows
r− 1 and r are in S then S corresponds to T (ie T = S1), which we obtain by replacing
rows r−1 and r of S by row r−1 of T which corresponds to q. Otherwise we let S = T .
Either way (−1)N(S) = (−1)N(T ) and so

∑
S⊂R

MS∈M

(−1)N(S) =
∑

T⊂R(M1)
(M1)T∈M

(−1)N(T ) = r(M1)− `(M1) = r(M)− `(M),

by the induction hypothesis. Further, we have that for N even,
∑

S⊂R,N(S)≤N
MS∈M

(−1)N(S) =
∑

T⊂R(M1),N(T )≤N−2
(M1)T∈M

(−1)N(T ) ≥ r(M)− `(M).

The analogous inequality holds in the case where N is odd. Thus, we have that (27),
(28) and (29) all hold.

Finally, suppose that nj = q for some j, say nr−2 = q. Then q must be prime else
there would be a non-monochromatic cycle in M ∈ M. But since prime q is in our set
it can only divide two of the integers of the set (by our previous deductions) and these
are nr−2 and nr−1. However this is then the whole graph and we observe that (27), (28),
and (29) all hold. ¤
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6.6 Counting Configurations

We partitioned B into connected components S1, . . . , Sh. Now we form the matrices Bk,
the union of the Sj ∈Mk, for each k ≥ 0, so that

r(B)− rank(B) =
∑

k≥0

r(Bk)− rank(Bk), (32)

and
r(Bk)− rank(Bk) =

∑

j: Sj∈Mk

r(Sj)− rank(Sj).

More importantly
∑

j: Mj∈M0

r(Mj)− rank(Mj) =
∑

j: Mj∈M0

∑
S⊂R(Mj)

MS∈M

(−1)N(S) =
∑

S⊂R(B0)
MS∈M

(−1)N(S), (33)

by Proposition 6.5. If k ≥ 1 then there are a bounded number of Sj isomorphic to any
given matrix M ∈Mk, by Proposition 6.1, and so we believe that these contribute little
to our sum (32). In particular we conjecture that

∑

k≥1

∑

j: Mj∈Mk





r(Mj)− rank(Mj)−
∑

S⊂R(Mj)

MS∈M

(−1)N(S)





= o(π(y0))

with probability 1 − o(1). Hence the last few equations combine to give what will now
be our
Assumption:

r(B)− rank(B) =
∑

S⊂R(B)
MS∈M

(−1)N(S) + o(π(y0)). (34)

By combining (23), (34), and the identity

∑

σ∈S`

∏̀

j=1

1∑`
i=j cσ(i)

=
∏̀

j=1

1
ci

,

(here S` is the symmetric group on 1, ..., `, and taking ci = mi−1) we obtain, by summing
over all orderings of the primes,

E(r(B)− rank(B)) ∼ f(η)π(y0) (35)

where

f(η) :=
∑

M∈M∗

(−1)N(M)

|AutCols(M)| · |AutRows(M)| ·
ηr(M)

∏`
j=1(mj − 1)

, (36)

assuming that when we sum and re-order our initial series, we do not change the value
of the sum. Here AutCols(M) denotes the number of ways to obtain exactly the same
matrix M when permuting the columns, and M∗ = M/ ∼ where two matrices are
considered to be “equivalent” if they are isomorphic.
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6.7 Husimi graphs

All of the graphs G(M), M ∈ M are simple graphs, and have only monochromatic
cycles: notice that these cycles are subsets of the complete graph formed by the edges of
a particular colour (corresponding to the integers divisible by a particular prime). Hence
any two-connected subgraph of G(M) is actually a complete graph: This is precisely the
definition of a Husimi graph (see [11]), and so the isomorphism classes of Husimi graphs
are in one-to-one correspondence with the matrices in M∗.

Husimi graphs have a rich history, inspiring the combinatorial theory of species, and
are central to the thermodynamical study of imperfect gases (see [11] for references and
discussion).

Lemma 6.6 If G is a Husimi graph then

Aut(G) ∼= AutRows(M)×AutCols(M). (37)

Proof. If σ ∈ Aut(G) then it must define a permutation of the colors of G; that is an
element τ ∈ AutCols(M). Then τ−1σ ∈ Aut(G) is an automorphism of G that leaves the
colors alone; and therefore must permute the elements of each given color. However if
two vertices of the same color in G are each adjacent to an edge of another color then
permuting them would permute those colors which is impossible. Therefore τ−1σ only
permutes the vertices of a given color which are not adjacent to edges of any other color;
and these correspond to automorphisms of the rows of M containing just one 1. However
this is all of AutRows(M) since if two rows of M are identical then they must contain a
single element, else G would contain a non-monochromatic cycle. ¤

Let Hu(j2, j3, . . .) denote the set of Husimi graphs with ji blocks of size i for each i,
on

r = 1 +
∑

i≥2

(i− 1)ji (38)

vertices, with ` =
∑

i ji and N(M) =
∑

i iji. (This corresponds to a matrix M in
which exactly ji columns contain precisely i 1’s.) In this definition we count all distinct
labellings, so that

Hu(j2, j3, . . .) =
∑

G

r!
|Aut(G)| ,

where the sum is over all isomorphism classes of Husimi graphs G with exactly ji blocks
of size i for each i. The Mayer-Husimi formula (which is (42) in [11]) gives

Hu(j2, j3, . . .) =
(r − 1)!∏

i≥2((i− 1)!jiji!)
· r`−1, (39)

and so, by (36), (37) and the last two displayed equations we obtain

f(η) =
∑

j2,j3,...≥0
j2+j3+···<∞

(−1)r+`−1 r`−2

∏
i≥2((i− 1)!ji(i− 1)jiji!)

· ηr. (40)
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6.8 Convergence of f(η).

In this section we prove, under an appropriate (analytic) assumption, the following
“Theorem” The function f(η) has radius of convergence e−γ , is increasing in [0, e−γ),
and limη→(e−γ)− f(η) = 1.

So far we have paid scant attention to necessary convergence issues. First note the
identity

exp

( ∞∑

i=1

ci

)
=

∑
k1,k2,...≥0

k1+k2+···<∞

∏

i≥1

cki
i

ki!
, (41)

which converges absolutely for any sequence of numbers c1, c2, ... for which |c1|+ |c2|+ · · ·
converges, so that the terms in the series on the right-hand-side can be summed in any
order we please.

The summands of f(η), for given values of r and `, equal (−1)r+`−1r`−2ηr times

∑
j2,j3,...≥0P

i≥2 ji=`,
P

i≥2(i−1)ji=r−1

1∏
i≥2((i− 1)!ji(i− 1)jiji!)

, (42)

which is exactly the coefficient of tr−1 in

1
`!

(
t +

t2

2 · 2!
+

t3

3 · 3!
+ . . .

)`

,

and so is less than τ `/`! where τ =
∑

j≥1 1/(j · j!) ≈ 1.317902152. Note that if r ≥ 2
then 1 ≤ ` ≤ r − 1. Therefore the sum of the absolute values of all of the coefficients of
ηr in f(η) is less than

∑

2≤`≤r−1

r`−2 τ `

`!
¿ rr−2 τ r

r!
¿ (eτ)r

r5/2

The first inequality holds since τ > 1, the second by Stirling’s formula. Thus f(η)
is absolutely convergent for |η| ≤ ρ0 := 1/(eτ) ≈ 0.2791401779. We can therefore
manipulate the power series for f , as we wish, inside the ball |η| ≤ ρ0, and we want to
extend this range.

Let

A(T ) := −
∑

j≥1

(−1)jT j

j · j! =
∫ T

0

1− e−t

t
dt.

The identity (41) implies that the coefficient of tr−1 in exp(rA(ηt)) is

∑
j2,j3,...

j2+2j3+3j4+···=r−1

(−1)r+`−1r`ηr−1

∏
i≥2((i− 1)!ji(i− 1)jiji!)

,

so that

f ′(η) =
∑

r≥1

coeff of tr−1 in exp(rA(ηt))
r

. (43)
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We will now obtain a functional equation for f ′ using Lagrange’s Inversion formula:
Lagrange’s Inversion formula: If g(w) is analytic at w = 0, with g(0) = a and
g′(0) 6= 0, then

h(z) =
∞∑

r=1

(
d

dw

)r−1 (
w

g(w)− a

)r∣∣∣∣
w=0

(z − a)r

r!

is the inverse of g(w) in some neighbourhood around a (that is we have h(g(w)) = 1).

If g(w) = w/ϕ(w), where ϕ(w) is analytic and non-zero in some neighbourhood of 0,
then

h(z) =
∞∑

r=1

cr−1z
r

r

is the inverse of g(w) in some neighbourhood around 0, where cj is the coefficient of wj

in ϕ(w)j+1. Applying this with ϕ(w) = eA(ηw) we find that g(w) = we−A(ηw) has an
inverse h(z) in a neighbourhood, Γ, around 0 where

h(1) =
∑

r≥1

coeff. of zr−1 in exp(rA(ηz))
r

= f ′(η).

We will assume that the neighbourhood Γ includes 1. Therefore, since

1 = g(h(1)) = h(1)e−A(ηh(1)) = f ′(η)e−A(ηf ′(η)),

we deduce that
f ′(η) = eA(ηf ′(η)). (44)

(Note that this can only hold for η in some neighborhood of 0 in which the power series
for f ′(η) converges.) Taking the logarithm of (44) and differentiating we get, using the
formula A′(T ) = 1−e−T

T ,

f ′′(η)
f ′(η)

= (ηf ′(η))′
1− e−ηf ′(η)

ηf ′(η)

so that f ′(η) = (ηf ′(η))′ − ηf ′′(η) = (ηf ′(η))′ e−ηf ′(η). Integrating and using the facts
that f(0) = 0 and f ′(0) = 1, we have

f(η) = 1− e−ηf ′(η). (45)

We therefore deduce that

ηf ′(η) = − log(1− f(η)) =
∑

k≥1

f(η)k

k
. (46)

Lemma 6.7 The coefficients of f(η) are all non-negative. Therefore |f(z)| ≤ f(|z|) so
that f(z) is absolutely convergent for |z| < R if f(η) converges for 0 ≤ η < R. Also all of
the coefficients of f ′(η) are non-negative and f ′(0) = 1 so that f ′(η) > 1 for 0 ≤ η < R.
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Proof. Write f(η) =
∑

r≥0 arη
r. We prove that ar > 0 for each r ≥ 1, by induction. We

already know that a1 = 1 so suppose r ≥ 2. We will compare the coefficient of ηr on
both sides of (46). On the left side this is obviously rar. For the right side, note that
the coefficient of ηr in f(η)k is a polynomial, with positive integer coefficients (by the
multinomial theorem), in variables a1, . . . , ar+1−k for each k ≥ 1. This is 0 for k > r, and
is positive for 2 ≤ k ≤ r by the induction hypothesis. Finally, for r = 1, the coefficient
is ar. Therefore we have that rar > ar which implies that ar > 0 as desired. ¤

Our plan is to determine R, the radius of convergence of f(η), by determining the
largest possible R1 for which f ′(η) is convergent for 0 ≤ η < R1. Then R = R1.

Since f ′ is monotone increasing (as all the coefficients of f ′ are positive), we can
define an inverse on the reals ≥ f ′(0) = 1. That is, for any given y ≥ 1, let ηy be the
(unique) value of η ≥ 0 for which f ′(η) = y. Therefore R1 = limy→∞ ηy:

We claim that the value of f ′(η) is that unique real number y for which Bη(y) :=
A(ηy)− log y = 0: By (44) we do have that Bη(f ′(η)) = 0, and this value is unique if it
exists since Bη(y) is monotone decreasing, as

B′
η(y) = ηA′(ηy)− 1/y = −e−ηy/y < 0.

This last equality follows since A′(T ) = 1−e−T

T . Now A′(T ) > 0 for T > 0, and so A(t) >
0 for all t > 0 as A(0) = 0. Therefore Bη(1) = A(η) > 0, and so, remembering that Bη(y)
is monotone decreasing, we have that a solution y exists to Bη(y) := A(ηy)− log y = 0
if and only if Bη(∞) < 0. Therefore R1 is precisely that value of η = η1 for which
Bη1(∞) = 0. Now

Bη(y) = Bη(1) +
∫ y

1
B′

η(t)dt = A(η)−
∫ y

1

e−ηt

t
dt.

so that

Bη(∞) = A(η)−
∫ ∞

1

e−ηy

y
dy.

Therefore
∫ ∞

1

e−η1y

y
dy = A(η1) = A(0) +

∫ η1

0
A′(v)dv =

∫ η1

0

(1− e−v)
v

dv,

so that ∫ η1

1

dv

v
=

∫ ∞

1

e−v

v
dv −

∫ 1

0

(1− e−v)
v

dv = −γ

(as is easily deduced from the third line of (6.3.22) in [1]). Exponentiating we find that
R1 = η1 = e−γ = .561459...

Finally by (45) we see that f(η) < 1 when f ′(η) converges, that is when 0 ≤ η < η0,
and f(η) → 1 as η → η−0 .
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6.9 From expectation to probability

One can easily generalize Proposition 2 to prove the following result, which implies that
if E(r(B)−rank(B)) > (1+2ε)π(y0) then r(B)−rank(B) > (1+ε)π(y0) with probability
1− oε(1).

Proposition 6.8 If M ∈M then

#{S ⊆ Ay0 : MS ' M} ∼ E(#{S ⊆ Ay0 : MS ' M})
with probability 1− o(1), as x →∞.

Hence, with probability 1− o(1) we have, assuming (34) is true, that

∑

j: Mj∈M
r(Mj)− rank(Mj) ∼ E


 ∑

j: Mj∈M
r(Mj)− rank(Mj)




as x → ∞, which is why we believe that one can take J = (e−γ + o(1))J0(x) with
probability 1− o(1).

7 Algorithms

7.1 The running time for Pomerance’s problem

We will show that, with current methods, the running time in the hunt for the first
square product is dominated by the speed of finding a linear dependence in our matrix
of exponents:

Let us suppose that we select a sequence of integers a1, a2, . . . , aJ in [1, n] that appear
to be random, as in Pomerance’s problem, with J ³ J0. We will suppose that the
time taken to determine each aj , and then to decide whether aj is y0-smooth and, if
so, to factor it, is ¿ y

(1−ε)/ log log y0

0 steps (note that the factoring can easily be done
in exp(O(

√
log y0 log log y0)) steps by the elliptic curve method, according to [3], section

7.4.1). Therefore, with probability 1−o(1), the time taken to obtain the factored integers
in the square dependence is ¿ y

2−ε/ log log y0

0 by (8).
In order to determine square product we need a linear dependence mod 2 in the

matrix of exponents. Using the Wiedemann or Lanczos methods (see section 6.1.3 of
[3]) this takes time O(π(y0)2µ), where µ is the average number of prime factors of an ai

which has been kept, so this is by far the lengthiest part of the running time.

7.2 Improving the running time for Pomerance’s problem

If instead of wanting to simply find the first square dependence, we require an algorithm
that proceeds as quickly as possible to find any square dependence then we should select
our parameters so as to make the matrix smaller. Indeed if we simply create the matrix
of y-smooths then we will optimize by taking

π(y)
Ψ(x, y)/x

³ π(y)2µ,
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that is the expected number of aj ’s selected should be roughly the running time to
determine the square product. Here µ, is as in the previous section, and so we expect
that µ is roughly

1
ψ(x, y)

∑

n≤x,P (n)≤y

∑

p≤y: p|n
1 =

∑

p≤y

ψ(x/p, y)
ψ(x, y)

∼
∑

p≤y

1
pα

∼ y1−α

(1− α) log y
∼ log y

log log y

by (12), the prime number theorem and (11). Hence we optimize by selecting y = y1 so
that ρ(u1) ³ (log log y1)/y1, which implies that

y1 = y
1−(1+o(1))/ log log x
0 ,

by Lemma 2.2, which is considerably smaller than y0. On the other hand, if J1 is the
expected running time, π(y1)/(Ψ(x, y1)/x) then

J1/J0 ∼ y1/ρ(u1)
y0/ρ(u0)

= exp
(
{1 + o(1)} u0 log u0

(log log x)2

)
= y

(1+o(1))/(log log x)2

0

by the prime number theorem, (3), and (22) in the proof of Lemma 2.3 in [4].

7.3 Smooth squares

In factoring algorithms, the ai are squares mod n (as explained at the beginning of
section 1), which is not taken into account in Pomerance’s problem. For instance, in
Dixon’s random squares algorithm one selects b1, b2, . . . , bJ ∈ [1, n] at random and lets
ai be the least residue of b2

i (mod n). We keep only those ai that are y-smooth, and so
to complete the analysis we need some idea of the probability that a y-smooth integer
is also a square mod n. Dixon [5] gives an (unconditionally proven) lower bound for
this probability which is too small by a non-trivial factor. We shall estimate this proba-
bility much more accurately though under the assumption of the Generalized Riemann
Hypothesis.

Theorem 7.1 Assume the Generalized Riemann Hypothesis and let n be an integer
with smallest prime factor > y, which is > 23ω(n)Lε (where ω(n) denotes the number
of distinct prime factors of n). For any n ≥ x ≥ n1/4+δ, the proportion of the positive
integers a ≤ x where a is a square mod n and coprime to n, which are y-smooth, is
∼ Ψ(x, y)/x.

We use the following result which is easily deduced from the remark following The-
orem 2 of [9]:

Lemma 7.2 Assume the Generalized Riemann Hypothesis. For any non-principal char-
acter χ (mod n), and 1 ≤ x ≤ n we have, uniformly,

∣∣∣∣∣∣∣

∑
a≤x

a y−smooth

χ(a)−
∑

a≤x

χ(a)

∣∣∣∣∣∣∣
¿ Ψ(x, y)(log n)3√

y
.
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Proof of Theorem 7.1. Let M(x) be the number of a ≤ x which are coprime with
n, let N(x) be the number of these a which are a square mod n, and let N(x, y) be the
number of these a which are also y-smooth. Then

(
N(x, y)− Ψ(x, y)

2ω(n)

)
−

(
N(x)− M(x)

2ω(n)

)
=

=




∑
a≤x,(a,n)=1
a y−smooth

−
∑
a≤x

(a,n)=1





∏

p|n

1
2

{
1 +

(
a

p

)}
− 1

2ω(n)




=
1

2ω(n)

∑
d|n
d6=1

µ2(d)




∑
a≤x,(a,n)=1
a y−smooth

(a

d

)
−

∑
a≤x

(a,n)=1

(a

d

)

 ¿ Ψ(x, y)(log n)3√

y

by Lemma 7.2. Now Burgess’s theorem tells us that N(x) − M(x)/2ω(n) ¿ x1−ε if
x ≥ n1/4+δ, the prime number theorem that ω(n) ≤ log n/ log y = o(log x), and (7)
that Ψ(x, y) ≥ x1−ε/2 as y > Lε. Hence N(x, y) ∼ Ψ(n, y)/2ω(n). The number of
integers a ≤ x which are coprime to n and a square mod n is ∼ (φ(n)/n)(x/2ω(n)), and
φ(n) = n(1 + O(1/y))ω(n) ∼ n, so the result follows. ¤

7.4 Making the numbers smaller

In Pomerance’s quadratic sieve the factoring stage of the algorithm is sped up by having
the ai be the reduced values of a polynomial, so that every pth ai is divisible by p, if
any aj is. This regularity means that we can proceed quite rapidly, algorithmically in
factoring the ai’s. In addition, by an astute choice of polynomials, the values of ai are
guaranteed to be not much bigger than

√
n, which gives a big saving, and one can do a

little better (though still bigger than
√

n) with Peter Montgomery’s “multiple polynomial
variation”. For all this see section 6 of [3].

8 Large prime variations

8.1 A discussion of Theorem 4.2 in [4] and its consequences.

Define

expk(z) :=
k−1∑

j=0

zj

j!
so that lim

k→∞
expk(z) = exp(z), and

AM (z) :=
∫ 1

1/M

1− e−zt

t
dt so that lim

M→∞
AM (z) = A(z) =

∫ 1

0

1− e−zt

t
dt .

Recursively, define functions γm,M,k by γ0,M,k(u) := u and

γm+1,M,k(u) := u expk [AM (γm,M,k(u))]
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for m = 0, 1, 2, . . . Note that γm,M,k(u) is increasing in all four arguments. From this
it follows that γm,M,k(u) increases to γM,k(u) as m → ∞, a fixed point of the map
z 7→ u expk(Am(z)), so that

γM,k(u) := u expk [AM (γM,k(u))] . (47)

We now establish that γM,k(u) < ∞ except perhaps when M = k = ∞: We have
0 ≤ AM (z) ≤ log M for all z, so that u < γM,k(u) ≤ Mu for all u; in particular
γM,k(u) < ∞ if M < ∞. We have A(z) = log z + O(1) so that if γ∞,k(u) is sufficiently
large, we deduce from (47) that γ∞,k(u) ∼ u(log u)k−1/(k − 1)!; in particular γ∞,k(u) <
∞. As M, k → ∞, the fixed point γM,k(u) increases to the fixed point γ(u) of the map
z 7→ ueA(z) (by comparing this with (44) we see that γ(u) = uf ′(u)). In [4] we show that
this map has a fixed point if and only if u ≤ e−γ . Otherwise γ(u) = ∞ for u > e−γ so
that

∫ η
0

γ(u)
u du = ∞ > 1 for any η > e−γ .

One might ask how the variables m,M, k, u relate to our problem? We are looking
at the possible pseudosquares (that is integers which are a y0-smooth times a square)
composed of products of aj with j ≤ uJ0. We restrict our attention to aj that are
My0-smooth, and which have at most k prime factors ≥ y0. In the construction of our
hypergraph we examine the aj selecting only those with certain (convenient) properties,
which corresponds to m = 0. Then we pass through the aj again, selecting only those
with convenient properties given the aj already selected at the m = 0 stage: this cor-
responds to m = 1. We iterate this procedure which is how the variable m arises. The
advantage in this rather complicated construction is that the count of the number of
pseudosquares created, namely

∼ π(y0) ·
∫ η

0

γm,M,k(u)
u

du ,

increases as we increase any of the variables so that it is relatively easy to deal with
convergence issues (this is Theorem 2 in [4]). This technique is more amenable to analysis
than the construction that we give in section 6, because here we use the inclusion-
exclusion type formula (36) to determine f(η), which has both positive and negative
terms, and it has proved to be beyond us to establish unconditionally that this sum
converges.

Note that as m →∞ we have that the number of pseudosquares created is

∼ π(y0) ·
∫ η

0

γM,k(u)
u

du ; (48)

hence if the value of this integral is > 1 then we are guaranteed that there is a square
product. If we let M and k go to ∞ then the number of pseudosquares created is

∼ π(y0) ·
∫ η

0

γ(u)
u

du .

The upper bound in Conjecture 1.1 follows. In terms of what we have proposed in section
6, we have now shown that the number of pseudosquares created is indeed ∼ f(η)π(y0).
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We remarked above that this integral is an increasing function of η and equals 1 for
η = e−γ . Hence if η > e−γ then we are guaranteed that there is a square product. One
might expect that if η = e−γ + ε then we are guaranteed C(ε)π(y0) square products for
some C(ε) > 0. However we get rather more than that: if η > e−γ then

∫ η
0

γ(u)
u du = ∞

(that is f(η) diverges) and hence the number of square products is bigger than any fixed
multiple of π(y0) (we are unable to be more precise than this).

8.2 Speed-ups

From what we have discussed above we know that we will find a square product amongst
the y0-smooth aj ’s once J = {1 + o(1)}J0 with probability 1− o(1). When we allow the
aj ’s that are either y0-smooth, or y0-smooth times a single larger prime then we get a
stopping time of {c1+o(1)}J0 with probability 1−o(1) where c1 is close to 3/4. When we
allow any of the aj ’s in our square product then we get a stopping time of {e−γ +o(1)}J0

with probability 1− o(1) where e−γ = .561459 . . .. It is also of interest to get some idea
of the stopping time for the k-large primes variations, for values of k other than 0, 1 and
∞. In practice we cannot store arbitrarily large primes in the large prime variation, but
rather keep only those aj where all of the prime factors are ≤ My0 for a suitable value
of M – it would be good to understand the stopping time with the feasible prime factors
restricted in this way. We have prepared a table of such values using the result from [4]
as explained in section 8.1: First we determined a Taylor series for γM,k(u) by solving
for it in the equation (47). Next we found the appropriate multiple of π(y0), a Taylor
series in the variable η, by substituting our Taylor series for γM,k(u) into (48). Finally,
by setting this multiple equal to 1, we determined the value of η for which the stopping
time is {η + o(1)}J0 with probability 1− o(1), when we only use the aj allowed by this
choice of k and M , to make square products.

k M = ∞ M = 100 M = 10
0 1 1 1
1 .7499 .7517 .7677
2 .6415 .6448 .6745
3 .5962 .6011 .6422
4 .5764 .5823 .6324
5 .567 .575 .630

The expected stopping time, as a multiple of J0.

8.3 A practical perspective

One approaches Pomerance’s question, in practice, as part of an implementation of a
factoring algorithm. The design of the computer, the language and the implementation
of the algorithm, all affect the running time of each particular step. Optimally balancing
the relative costs of the various steps of an algorithm (like the quadratic sieve) may be
substantially different as these environmental factors change. This all makes it difficult
to analyze the overall algorithm and to give one definitive answer.
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The key parameter in Pomerance’s problem and its use in factoring algorithms is the
smoothness parameter y = y1: We completely factor that part of aj which is y-smooth.
Given the origin of the aj ’s it may be possible to do this very efficiently using a sieve
method. One may obtain a significant speed-up by employing an “early abort” strategy
for the aj that have a particularly small y1-smooth part, where y1 is substantially smaller
than y. The size of y also determines the size of the matrix in which we need to find a
linear dependence – note though that the possible size of the matrix may be limited by
the size of memory, and by the computer’s ability to handle arrays above a certain size.

Suppose that aj equals its y-smooth part times bj , so that bj is what is left after
the initial sieving. We only intend to retain aj if bj = 1, or if bj has no more than
k prime factors, all of which are ≤ My. Hence the variables M and k are also key
parameters. If M is large then we retain more aj ’s, and thus the chance of obtaining
more pseudosquares. However this also slows down the sieving, as one must test for
divisibility by more primes. Once we have obtained the bj by dividing out of the aj all
of their prime factors ≤ y we must retain all of those bj ≤ (My)k. If we allow k to be
large then this means that only a very small proportion of the bj that are retained at
this stage will turn out to be My-smooth (as desired), so we will have wasted a lot of
machine cycles on useless aj . A recent successful idea to overcome this problem is to keep
only those aj where at most one of the prime factors is > M ′y for some M ′ that is not
much bigger than 1 — this means that little time is wasted on aj with two “large” prime
factors. The resulting choice of parameters varies from program to program, depending
on how reports are handled etc. etc., and on the prejudices and prior experiences of the
programmers. Again, it is hard to make this an exact science.

Arjen Lenstra told us, in a private communication, that in his experience of practical
implementations of the quadratic sieve, once n and y are large enough, the single large
prime variation speeds things up by a factor between 2 and 2.5, and the double large
prime variation by another factor between 2 and 2.5 (see, e.g. [13]), for a total speed-up
of a factor between 4 and 6. An experiment with the triple large prime variation [12]
seemed to speed things up by another factor of around 1.7.

Factorers had believed (see, e.g. [13] and [3]) that, in the quadratic sieve, there
would be little profit in trying the triple large prime variation, postulating that the
speed-up due to the extra pseudosquares obtained had little chance of compensating for
the slowdown due to the large number of superfluous ajs considered, that is those for
which bj ≤ (My)3 but turned out to not be My-smooth. On the other hand, in practical
implementations of the number field sieve, one obtains aj with more than two large prime
factors relatively cheaply and, after a slow start, the number of pseudosquares obtained
suddenly increases very rapidly (see [6]). This is what led the authors of [12] to their
recent surprising and successful experiment with the triple large prime variation for the
quadratic sieve. (See Willemien Ekkelkamp’s contribution to these proceedings [7] for
further discussion of multiple prime variation speed-ups to the number field sieve.)

This practical data is quite different from what we have obtained, theoretically, at the
end of the previous section. There are two reasons for this – the data in the last section
was for Pomerance’s problem in which the smoothness parameter is y0, whereas in these
questions the smoothness parameter is y1, which is substantially smaller. Secondly,
in our analysis of Pomerance’s problem, the variations in M and k simply affect the
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number of aj being considered, whereas here these affect not only the number of aj

being considered, but also several other important quantities. For instance, the amount
of sieving that needs to be done, and also the amount of data that needs to be “swapped”
(typically one saves the aj with several large prime factors to the disk, or somewhere
else suitable for a lot of data). It would certainly be interesting to run experiments on
Pomerance’s problem directly to see whether our predicted speed comparisons are close
to correct for numbers within computational range.
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