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1 Introduction

Given a set X we say that a group G acts on X if we can think of the
elements of G' as being permutations on X. So, given g € G and x € X we
can consider y = g(z). We say that “g sends the element = to the element
y”. To truly be an action we need the following two proerties to hold:

1. If e € G denotes the identity element, then for every x € X we have
that e(z) = z; that is, e fixes all the elements of X.
2. If g, h € G, then the action (gh)(z) = g(h(z)).

It is a little bit subtle why Property 2 might be useful for applications:
What property 2 is saying is that if you could factor an element f € G has
f = gh, then the action of f on X is the same as the action of h, followed

by g.

The fact that you can factor an action like this is exactly what makes
simple second-order differential equations easy to solve. Let me explain:
Suppose you wanted to solve the homogeneous differential equation

One way you can do this is to re-express the left-hand-side in terms of a
“differential operator” as



(The expression between parenthesis is the differential operator.) Now, just
like with group actions, you can factor this operator into two pieces as
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where

If you just let

which is the inner expression in (1), then you just need to solve
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Well, this is easy to solve by seperation of variables: You just get
U(z) = ke .

So, putting this into (2) you see that you have reduced the second-order
differential equation to the first order equation

d
ke ' = —y+9'y,
dz

and there are simple methods (integrating factors) to solve such equations.

Caution. Differential operators are not group actions, although they and
group actions do have some similarities.

2 Homomorphism Definition and an Exam-
ple

Here we give a more abstract definition of group actions, one that is more
natural from the point of view of algebra: Given a group G and a set X, we
say that G acts on X if there is a homomorphism

v G — Sy,
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where Sy denotes the set of permutations on the set X.
Notice here the the second property of an action as defined in the previous
section is essentially the homomorphism property of .

Example. Suppose that X = {1,2,3}, which coresponds to the vertices of
a triangle; and, suppose that G is the group D3. We know that D3 acts on
the vertices 1,2, 3 of some triangle; and so, if we were to let ¢ denote this
correspondance between G and these permutations on the labels 1,2, 3, we
will have

w0 = (133)
e = (557)
o) = (373
an = (133)
erm = (53 7)
army = (5 1%).

where F' and R have their usual meaning.

Note. Here I thought of the action of the group on the vertices a little
differently than I have in class in the past. Here, the actions work from
right-to-left; so, the action FR means that you first rotate, and then perform
a flip. The reason for switching the order of operation here is so that ¢
preserves sturcture as

©(gh) = w(g) o p(h),

not

o(gh) = @(h)op(g).



3 Orbit-Stabilizer Theorem

Given an element x € X, look at all the places that elements of GG sends =
under the action of G on X. This is called the orbit of x, and is denoted
orbit(x).

For example, suppose that we have a triangle, and we consider the action
of the group H = {e, F'} on that triangle. Note that H is a subgroup of Dj
consisting of just one flip through the vertical axis passing through the top
point of our equilateral triangle. Cetainly, if D3 acts on the labels of the
vertices of the triangle, then if we restrict to this subgroup H, we also get an
action of H on X. !

We have X = {1,2,3}, the labels. Now suppose you take x = 3, the label
of the lower right vertex in the initial configuarion (before we apply group
actions to the triangle). H either sends 3 to 2, or it fixes the label 3. So, we
have that the orbit of 3 is {2,3}. Also, the orbit of 2 is {2, 3}, and the orbit
of 1is {1}, because the flip F' fixes the label of the top vertex.

Another structure associated with an element x € X is the stabilizer of
x, denoted stab(z). The stabilizer is the set of all g € G that fix our element
x; that is,
stab(z) = {9 € G : g(z) =x}.

Note. I had incorrectly stated in class that stab(x) is the same as the kernel
of the map

¢ G — Sorbit(x)-
That is, you can think of GG not just as acting on X, but acting on the orbit
of x. The kernel of this map would be the set of all g € GG that fixes the entire
orbit of x, not just x by itself. Thus, we certainly have ker(¢)) < stab(x),
but these two groups are not equall!

The well-known Orbit-Stabilizer Theorem says the following:

Theorem. Suppose that a finite group G acts on a set X. Let x € X be
an arbitrary element. Then,

|G| = lorbit(x)| - |stab(x)|.

IThis is a basic fact that I have not mentioned yet in my lectures: If you have a
homomorphism ¢ : G — G’, then you can restrict ¢ to a subgroup H < G, to produce
another homomorphism ¢’ : H — G'.



The proof is to look at the action of the cosets of H = stab(z) on x. Say
all the cosets of H in G are a1H,a2H, ...,a;H. Then, if g € a; H, we will have
that g = a;h for some h € H, and

g(x) = (a:h)(x) = ai(h(z)) = a;(x).

Thus, every element of a;H sends x to the same place, namely a;(x).

If we also had that different cosets sent x to different places, then we
would have that there cosets of H are in one-to-one correspondance with the
orbit of x. Let us see that this is the case: Say we had that a;(x) = a;(x).
Then, we would have that (a;'a;)(z) = z. The reason that we can shift the
a; to the other side like that is that we are thinking of elements of G as being
bijections from the orbit of = to itself; and, bijections are invertible.

Now, we conclude that a;'a; € stab(z) = H, which means that a; € a;H.
So, a;H and a;H are not disjoint. Therefore, we conclude that have to be
the same coset; that is, a;H = a;H (because cosets are distinct if and only
if they are disjoint).

Thus, different cosets of H send z to different places, and we therefore
conclude that the number of different cosets of H is the size of the orbit of
x. Since the number of cosets of H is |G|/|H| we conclude

S|

= |orbit(zx)|,
|H|

which proves the orbit-stabilizer theorem on multiplying through by |H|.



