

Group Actions

Ernie Croot

February 8, 2008

1 Introduction

Given a set X we say that a group G acts on X if we can think of the elements of G as being permutations on X . So, given $g \in G$ and $x \in X$ we can consider $y = g(x)$. We say that “ g sends the element x to the element y ”. To truly be an action we need the following two properties to hold:

1. If $e \in G$ denotes the identity element, then for every $x \in X$ we have that $e(x) = x$; that is, e fixes all the elements of X .
2. If $g, h \in G$, then the action $(gh)(x) = g(h(x))$.

It is a little bit subtle why Property 2 might be useful for applications: What property 2 is saying is that if you could factor an element $f \in G$ has $f = gh$, then the action of f on X is the same as the action of h , followed by g .

The fact that you can factor an action like this is exactly what makes simple second-order differential equations easy to solve. Let me explain: Suppose you wanted to solve the homogeneous differential equation

$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - y = 0.$$

One way you can do this is to re-express the left-hand-side in terms of a “differential operator” as

$$\left(\frac{d^2}{dx^2} + 3\frac{d}{dx} - 1 \right) y = 0.$$

(The expression between parenthesis is the differential operator.) Now, just like with group actions, you can factor this operator into two pieces as

$$\left(\frac{d}{dx} + \theta\right) \left(\frac{d}{dx} + \theta'\right) y = \left(\frac{d}{dx} + \theta\right) \left[\left(\frac{d}{dx} + \theta'\right) y\right] = 0, \quad (1)$$

where

$$\theta = \frac{-3 + \sqrt{13}}{2}, \quad \theta' = \frac{-3 - \sqrt{13}}{2}.$$

If you just let

$$\psi(x) = \left(\frac{d}{dx} + \theta'\right) y = \frac{dy}{dx} + \theta' y, \quad (2)$$

which is the inner expression in (1), then you just need to solve

$$0 = \left(\frac{d}{dx} + \theta\right) \psi(x) = \frac{d\psi}{dx} + \theta\psi.$$

Well, this is easy to solve by separation of variables: You just get

$$\psi(x) = \kappa e^{-\theta x}.$$

So, putting this into (2) you see that you have reduced the second-order differential equation to the first order equation

$$\kappa e^{-\theta x} = \frac{dy}{dx} + \theta' y,$$

and there are simple methods (integrating factors) to solve such equations.

Caution. Differential operators are *not* group actions, although they and group actions do have some similarities.

2 Homomorphism Definition and an Example

Here we give a more abstract definition of group actions, one that is more natural from the point of view of algebra: Given a group G and a set X , we say that G acts on X if there is a homomorphism

$$\varphi : G \rightarrow S_X,$$

where S_X denotes the set of permutations on the set X .

Notice here the the second property of an action as defined in the previous section is essentially the homomorphism property of φ .

Example. Suppose that $X = \{1, 2, 3\}$, which corresponds to the vertices of a triangle; and, suppose that G is the group D_3 . We know that D_3 acts on the vertices 1, 2, 3 of some triangle; and so, if we were to let φ denote this correspondance between G and these permutations on the labels 1, 2, 3, we will have

$$\begin{aligned}\varphi(e) &= \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \\ \varphi(R) &= \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \\ \varphi(R^2) &= \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \\ \varphi(F) &= \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \\ \varphi(FR) &= \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \\ \varphi(FR^2) &= \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix},\end{aligned}$$

where F and R have their usual meaning.

Note. Here I thought of the action of the group on the vertices a little differently than I have in class in the past. Here, the actions work from right-to-left; so, the action FR means that you first rotate, and then perform a flip. The reason for switching the order of operation here is so that φ preserves structure as

$$\varphi(gh) = \varphi(g) \circ \varphi(h),$$

not

$$\varphi(gh) = \varphi(h) \circ \varphi(g).$$

3 Orbit-Stabilizer Theorem

Given an element $x \in X$, look at all the places that elements of G sends x under the action of G on X . This is called the orbit of x , and is denoted $\text{orbit}(x)$.

For example, suppose that we have a triangle, and we consider the action of the group $H = \{e, F\}$ on that triangle. Note that H is a subgroup of D_3 consisting of just one flip through the vertical axis passing through the top point of our equilateral triangle. Certainly, if D_3 acts on the labels of the vertices of the triangle, then if we restrict to this subgroup H , we also get an action of H on X .¹

We have $X = \{1, 2, 3\}$, the labels. Now suppose you take $x = 3$, the label of the lower right vertex in the initial configuration (before we apply group actions to the triangle). H either sends 3 to 2, or it fixes the label 3. So, we have that the orbit of 3 is $\{2, 3\}$. Also, the orbit of 2 is $\{2, 3\}$, and the orbit of 1 is $\{1\}$, because the flip F fixes the label of the top vertex.

Another structure associated with an element $x \in X$ is the stabilizer of x , denoted $\text{stab}(x)$. The stabilizer is the set of all $g \in G$ that fix our element x ; that is,

$$\text{stab}(x) = \{g \in G : g(x) = x\}.$$

Note. I had incorrectly stated in class that $\text{stab}(x)$ is the same as the kernel of the map

$$\psi : G \rightarrow S_{\text{orbit}(x)}.$$

That is, you can think of G not just as acting on X , but acting on the orbit of x . The kernel of this map would be the set of all $g \in G$ that fixes the *entire* orbit of x , not just x by itself. Thus, we certainly have $\ker(\psi) < \text{stab}(x)$, but these two groups are not equal!

The well-known Orbit-Stabilizer Theorem says the following:

Theorem. Suppose that a finite group G acts on a set X . Let $x \in X$ be an arbitrary element. Then,

$$|G| = |\text{orbit}(x)| \cdot |\text{stab}(x)|.$$

¹This is a basic fact that I have not mentioned yet in my lectures: If you have a homomorphism $\varphi : G \rightarrow G'$, then you can restrict φ to a subgroup $H < G$, to produce another homomorphism $\varphi' : H \rightarrow G'$.

The proof is to look at the action of the cosets of $H = \text{stab}(x)$ on x . Say all the cosets of H in G are a_1H, a_2H, \dots, a_tH . Then, if $g \in a_iH$, we will have that $g = a_ih$ for some $h \in H$, and

$$g(x) = (a_ih)(x) = a_i(h(x)) = a_i(x).$$

Thus, every element of a_iH sends x to the same place, namely $a_i(x)$.

If we also had that different cosets sent x to different places, then we would have that there cosets of H are in one-to-one correspondance with the orbit of x . Let us see that this is the case: Say we had that $a_i(x) = a_j(x)$. Then, we would have that $(a_j^{-1}a_i)(x) = x$. The reason that we can shift the a_j to the other side like that is that we are thinking of elements of G as being bijections from the orbit of x to itself; and, bijections are invertible.

Now, we conclude that $a_j^{-1}a_i \in \text{stab}(x) = H$, which means that $a_i \in a_jH$. So, a_iH and a_jH are not disjoint. Therefore, we conclude that have to be the same coset; that is, $a_iH = a_jH$ (because cosets are distinct if and only if they are disjoint).

Thus, different cosets of H send x to different places, and we therefore conclude that the number of different cosets of H is the size of the orbit of x . Since the number of cosets of H is $|G|/|H|$ we conclude

$$\frac{|G|}{|H|} = |\text{orbit}(x)|,$$

which proves the orbit-stabilizer theorem on multiplying through by $|H|$.