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Here, I will describe some details from my recent lectures, which are not
so well explained in the note on Freiman’s Theorem on the course webpage.

1 A Fact about Lattices that I Used

First, in one of the lemmas I presented in class, I said that the lattice Λ ⊆ R
k

generated by the k + 1 vectors

c = (c1, ..., ck), (N, 0, ..., 0), (0, N, 0, ..., 0), (0, 0, ..., N),

has |det(Λ)| = Nk−1 when c1 is coprime to N . I had said that one way to see
this is to form a basis for the lattice consisting of k vectors as follows: First,
let

c′ = (1, c′
2
, ..., c′k), where c′i ≡ cic

−1

1
(mod N).

Then, I claimed that Λ is generated by the vectors

c′, (0, N, 0, ..., 0), ..., (0, 0, ..., N), (1)

and using this basis it is obvious that |det(Λ)| = N k−1.

Let me now expound upon these comments, by showing that this new
basis does indeed generate the lattice: First, it is obvious that c′ ∈ Λ, because

c′ ∈ sc+NZ
k, where s ≡ c−1

1
(mod N).

This then establishes that Λ contains the sublattice generated by the vectors
(1). To show that sublattice is actually equal to Λ, it suffices to show that
it contains the two vectors

c and (N, 0, 0, ..., 0).
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First, we realize that

c− c1c
′ = (0, t2N, t3N, ..., tkN), where ti ∈ Z.

Clearly, then c lies in the span of the vectors (1).
Now consider

Nc′ = (N, c′
2
N, c′

3
N, ..., c′kN) = (N, 0, 0, ..., 0) + L,

where L is an integer linear combination of

(0, N, 0, ..., 0), (0, 0, N, ..., 0), ..., (0, 0, ..., N).

It follows that (N, 0, ..., 0) is also in our sublattice, and so the proof that
|det(Λ)| = Nk−1 is complete.

2 On a Lemma of Ruzsa

I thought I would give here an intuitive discussion of a certain lemma of
Ruzsa which played a central role in the proof of Freiman’s Theorem. This
lemma stated that:

Lemma. Suppose that A is a finite set of integers. Then, for any prime

N > 2|kA− kA|,

there exists a subset A′ ⊆ A of size at least |A|/k which is Freiman k-
isomorphic to a subset of Z/NZ.

In class I mentioned (while addressing a question of Adam Marcus) a
result in passing that was first proved by P. Erdős, which is somewhat helpful
in understanding Ruzsa’s proof (at least as far as what sorts of ideas one
should look for to prove a lemma of the same flavor as Ruzsa’s above). The
way I think of Ruzsa’s proof is that one can produce lots and lots of Freiman
k-homomorphisms ϕ from subsets A′ ⊆ A to Z/NZ, each parameterized by
some integer q that appears in intermediate steps of the proof, such that there
are more choices for q than there are potential obstructions that keep any
of the ϕ from being a Freiman k-isomorphism. So, by a counting argument
one discovers that there exists a q, and therefore a map ϕ, which results in
a Freiman k-isomorphism.
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This theorem of Erdős is as follows.

Theorem. Suppose that A is a finite set of integers. Then, there exists a
subset A′ ⊆ A satisfying |A′| ≥ |A|/3, such that A′ is “sum-free”, meaning
that it has no solutions

x + y = z, x, y, z ∈ A′.

Erdős’s proof is as follows: Let p be a prime number exceeding twice the
maximum absolute value of the elements of A. Then, if we mod the elements
of A out by p, each of the residues that result are distinct; furthermore, if
the dilate these residues by multiplying by a number q that is coprime to p,
then the new residues are also distinct. We are describing here a mapping

ϕ : A → Z/pZ

a → qa (mod p).

Now, it is easy to see that

a+ b = c, a, b, c ∈ A =⇒ ϕ(a) + ϕ(b) ≡ ϕ(c) (mod p).

So, if
S ⊆ img(ϕ)

is sum-free, then
A′ := ϕ−1(S) ⊆ A

is also sum-free.
A simple counting (or averaging) argument proves that there exists some

number q coprime to p such that the image of ϕ maps at least |A|/3 of the
elements of A into the interval [p/3, 2p/3) modulo p. Noting that the set of
integers in this interval form a sum-free set, even when considered modulo p,
it follows that there exists q and a set S ⊆ [p/3, 2p/3) mod p that is sum-free
and satisfies |S| ≥ |A|/3. So, A′ is also sum-free and satisfies

|A′| = |S| ≥ |A|/3.
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2.1 The Proof of Ruzsa’s Lemma

To prove Ruzsa’s lemma, we start by letting p be any prime satisfying

p > k(MAXA − MINA). (2)

The first part of Ruza’s proof bears more than a passing resemblence to
Erdős’s proof detailed previously: For an integer 1 ≤ q ≤ p − 1 (which is
necessarily coprime to p) we consider the mapping

ϕq : A → Z/pZ

a → qa (mod p).

It is obvious that this is a Freiman k-homomorpism for all k (since it is a
group homomorphism); however, what takes a little bit of work to see (though
not much) is that, in fact, inequality (2) implies that

ϕq is a Freiman k − isomorphism.

The trouble with working with the group Z/pZ to prove Ruzsa’s lemma
is that it is potentially too large (much larger than 2|kA− kA|). So what we
want to do is compress the images of ϕq in Z/pZ somehow; and, Ruzsa’s idea
was to map subsets of Z/pZ down to Z/NZ, where N is any prime satisfying

N > 2|kA− kA|.

Note that this N is potentially quite a bit smaller than p, which is good.

But now we have another problem, which is that if we let ψ be any
mapping from Z/pZ down to Z/NZ, it cannot be an injective Freiman k-
homomorphism, let alone an injective group homomorphism.

Ok, so ψ cannot be a Freiman k-homomorphism; however, if we restrict
ourselves to an integer interval I of residues mod p of width at most p/k,
then on that interval we can pick ψ to be a Freiman k-homomorphism. One
has to be a little careful here in descrbing this (due to the fact that residues
mod p are not integers, so the mapping is tricky to define because of “type”
issues): Let ι : Z/pZ → Z be any embedding mapping consecutive residues
to consecutive integers, such that the residues in I are mapped to consecutive
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integers (not all “obvious embeddings” have this last property). Then, one
choice for our ψ is

ψ := ψI : I → Z/NZ

n → ι(n) (mod N).

To prove Ruzsa’s lemma, then, we just need to focus on the following
claim.

Claim. There exists 1 ≤ q ≤ p− 1, such that more than |A|/k of the images
ϕq(a) land in an interval I of width ≤ p/k; and, if we let

A′ := ϕ−1

q (I) ∩ A,

then the composition ψI ◦ ϕq is a Freiman k-isomorphism.

Note that regardless of what q we pick, ψ|I ◦ ϕq is always a Freiman
k-homomorphism from A′ into Z/NZ; however, only special q are “good”,
meaning that they result in a k-isomorphism.

Now, if q is “bad”, then it means that there exist elements

a1, ..., ak, a
′

1
, ..., a′k ∈ A′,

such that
a1 + · · ·+ qk 6= a′

1
+ · · ·+ a′k,

yet when we consider the integers b1, ..., bk, b
′

1
, ..., b′k satisfying

bi ≡ qai (mod p), and b′i ≡ qa′i (mod p),

which are choosen so that they (the bi and b′i) lie in some interval I of width
at most p/k, then they will satisfy

b1 + · · ·+ bk − b′
1
− · · · − b′k ∈ (−p, p),

(this is easy to see) and

N | (b1 + · · ·+ bk − b′
1
− · · · − b′k)
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(this is by design, since we are assuming q is “bad”).

This puts severe restrictions on what our “bad” q can be, because it
means that, modulo p, we must have that

a1 + · · ·+ ak − a′
1
− · · · − a′k ≡ q−1(b1 + · · ·+ bk − b′

1
− · · · − b′k) (mod p)

≡ q−1Nm (mod p),

where m is the integer

m =
b1 + · · ·+ bk − b′

1
− · · · − b′k

N
∈ (−p/N, p/N).

So, the number of possibilities for a “bad” q is at most the number of
expressions a1 + · · ·+ ak − a′

1
− · · · − a′k times the number of choices for m;

that product is at most

2|kA− kA|(p− 1)/N,

which will be smaller than p − 1 (the number of available q satisfying 1 ≤
q ≤ p− 1) as soon as

N > 2|kA− kA|.
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