Homework 3, Analytic Number Theory

September 29, 2008

1. We showed (or will show) in class that if the Riemann Hypothesis is true,
then
Y Aln) = z+ O(z'?1og” ).
n<x
In this problem, you will prove the converse; that is, suppose that we
have such an estimate on this sum over the von-Mangoldt function. Then,
show that ((s) has no zeros p satisfying Re(p) > 1/2. The way to do this is
to produce a meromorphic continuation of
_C,(S) _ Z
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from Re(s) > 1 to the region Re(s) > 1/2, with only a simple pole at s = 1.
If s = 1 is indeed the only place where ¢’/( has a singularity in Re(s) > 1/2,
then it means that ((s) has no zeros in this same region, which we know
implies the Riemann hypothesis, because by the functional equation, all the
zeros of ((s) are symmetric about the line Re(s) = 1/2.

The key to solving this problem is just some clever use of integration-by-
parts (i.e. partial summation), in much the same way that we proved the
analytic continuation

where {2} denotes the fractional part of x.

2. In this problem you will use contour methods to esimate the sum

> w(n)

n<x



to within a good error. Although for this particular sum we already know
good estimates, which were provided, for example, by the convolution method,
it is a good idea to become familar with the contour methods, as they usually
provide the sharpest estimates for these sorts of quantities. !

Step 1. Suppose that f(s) and g(s) are zeta functions that take the form

e n > bTL
fls) = D0k gls) = 3o

We think of the coefficients a,, and b,, of these series as functions from the
natural numbers to the complex numbers; that is, a, = a(n) and b, = b(n).
Now consider the zeta function f(s)g(s), which can be written as

f(s)g(s) = S =

n=1 n’ .
Show that the coefficients ¢,, satisfy

c(n) = (axb)(n) = > a(d)b(n/d).
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Step 2. Recalling that

p(n) = (p+id)(n) = >_p(d)(n/d),

expalin why for Re(s) > 2,
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Step 3. Using the formula

1 c+iT yS
—/ —ds = 6(y) + E(y, 1),
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Indeed, a key part of Goldston, Pintz, and Yildrim’s famous recent work on small
gaps between primes made use of the vast power of contour methods to evaluate certain
difficult, technical sums in intermediate steps of their proof. Contour methods are also a
small part of Green and Tao’s famous work on primes in arithmetic progression.



where
0, if0<y<l;
6(y) = ¢ 1/2, ify=1;
1, ify>1.
and

yemin(1, T logy|™"), if y #1;
<
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explain why for any real number ¢ > 2,

1 et g(s—1) . N
2 ) = 27 /c—iT s ((s) ds + F(z,T),
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where F'(x,T) is a certain “error term”. How does E(x,T') grow as a function
of x and T? In order to answer this question you will need to pay attention
to the following facts:

e First, you will need the basic estimate p(n) < n.

e And second, you will need to pay attention to the |logy|™! in the
E(y,T), as it can become significant for certain ranges of y. In particular,
suppose that y = z/n, where say n = x — j < x, j > 1. Then, we have by
Taylor expansion that
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Step 4. Suppose we take ¢ = 3 and T = 2* in step 3, and then extend the
contour to a rectangle with edges

Ey, + 3T —3+:T

Ey, : 344 —3/2+4iT
Es : 3/24+T —3/2—iT
Ey : 3/2—iT —3—1T.

Give good upper bounds for the quantities

1 2 ((s—1)
i /E ) "




over ¢ = 2,3 and 4. Two key things you will need use and pay attention to
are:

e For Re(s) > 1+¢, we have that |((s)| < Cy, for some absolute constant
Cy = C1(e) that depends only on e. Basically, this is saying that if you are in
a certain “right-half-plane”, and if you are “not too near s = 1, where ((s)
has a simple pole”, then ((s) is bounded in magnitude.

e For Re(s) > 3/2, we have that |1/((s)| < Cs, for some absolute constant
Cs; in fact,
1
Cy = H <1 + W) .
p prime
Basically, this is telling you that “not only does ((s) have no zeros for Re(s) >
3/2, but in fact {(s) cannot even get too near to 0 in this region.”

Step 5. Use Cauchy’s integral formula to show that the integral around the
whole rectangular contour equals
s -1 2 6 2
ReSSZQx—C(S ) - T %
s ((s) ¢2) o«

Step 6. Combine all the above steps together, to deduce that

(Y 3/2
Z(p(n) = ?+O(x log x).

n<x

*Step 7. This should be considered a “bonus step”, as it requires a lot
more work: Explain how you could have gotten a sharper estimate, of say
O(zlogx) or so, by replacing the 3/2 in the above contour with, say, 1 +
1/log x, or some such thing.

**Step 8. This is really a bonus step, and I don’t adivse you spend much
time on it: What sort of estimates can you get for the sum of ¢(n) over
n < x if you assume the Riemann hypothesis? Note that, if you assume
RH, you can extend the left-most real coordinate of the contour from 3/2 (or
1+ 1/logx) to, say, 1/2 + €, for arbitrary € > 0. In principle, you should be
able to exploit this to give sharper esimates for error terms, if you are clever.



