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Abstract

How few three-term arithmetic progressions can a subset S ⊆ ZN :=
Z/NZ have if |S| ≥ υN? (that is, S has density at least υ). Varna-
vides [4] showed that this number of arithmetic-progressions is at least
c(υ)N2 for sufficiently large integers N ; and, it is well-known that de-
termining good lower bounds for c(υ) > 0 is at the same level of depth
as Erdös’s famous conjecture about whether a subset T of the natu-
rals where

∑

n∈T
1/n diverges, has a k-term arithmetic progression for

k = 3 (that is, a three-term arithmetic progression).
The author answers a question of B. Green [1] about how this min-

imial number of progressions oscillates for a fixed density υ as N runs
through the primes, and as N runs through the odd positive integers.

1 Introduction

Given an integer N ≥ 2 and a mapping f : ZN → C define

Λ3(f) = Λ3(f ;N) := En,d∈ZN
(f(n)f(n + d)f(n + 2d))

=
1

N2

∑

n,d∈ZN

f(n)f(n + d)f(n + 2d),

where E is the expectation operator, defined for a function g : ZN → C to
be

E(g) = En(g) :=
1

N

∑

n∈ZN

g(n).
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If S ⊆ ZN , and if we identify S with its indicator function S(n), which is
0 if n 6∈ S and is 1 if n ∈ S, then Λ3(S) is a normalized count of the number
of three-term arithmetic progressions a, a + d, a + 2d in the set S, including
trivial progressions a, a, a.

Given υ ∈ (0, 1], consider the family F(υ) of all functions

f : ZN → [0, 1], such that E(f) ≥ υ.

Then, define
ρ(υ,N) := min

f∈F(υ)
Λ3(f).

From an old result of Varnavides [4] we know that

Λ3(f) ≥ c(υ) > 0,

where c(υ) does not depend on N . A natural and interesting question (posed
by B. Green [1]) is to determine whether for fixed υ

lim
p→∞

p prime

ρ(υ, p) exists?

In this paper we answer this question in the affirmative: 1

Theorem 1 For a fixed υ ∈ (0, 1] we have

lim
p→∞

p prime

ρ(υ, p) exists.

Call the limit in this theorem ρ(υ). Then, this theorem has the following
immediate corollary:

Corollary 1 For a fixed υ ∈ (0, 1], let S be any subset of ZN such that
Λ3(S) is minimal subject to the constraint |S| ≥ υN . Let ρ2(υ,N) = Λ3(S).
Then,

lim
p→∞

p prime

ρ2(υ, p) = ρ(υ).

1The harder, and more interesting question, also asked by B. Green, which we do not
answer in this paper, is to give a simple formula for this limit.
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Given Theorem 1, the proof of the corollary is standard, and just amounts
to applying a functions-to-sets lemma, which works as follows: Given f :
ZN → [0, 1], E(f) = υ, we let S0 be a random subset of ZN where P(s ∈
S0) = f(s). It is then easy to show that with probability 1 − oυ(1),

E(S0) ∼ E(f), and Λ3(S0) ∼ Λ3(f).

So, there will exist a set S1 with these two properties (an instantiation of
the random set S0). Then, by adding only a small number of elements to
S1 as needed, we will have a set S satisfying

|S| ≥ υN, and Λ3(S) ∼ Λ3(f).

We will also prove the following:

Theorem 2 For υ = 2/3 we have that

lim
N→∞

N odd

ρ(υ,N) does not exist,

where here we consider all odd N , not just primes.

Thus, in our proof of Theorem 1 we will make special use of the fact that
our moduli are prime.

2 Basic Notation on Fourier Analysis

Given an integer N ≥ 2 (not necessarily prime), and a function f : ZN → C,
we define the Fourier transform

f̂(a) =
∑

n∈ZN

f(n)e2πian/N .

Thus, the Fourier transform of an indicator function C(n) for a set C ⊆ ZN

is:

Ĉ(a) =

N−1
∑

n=0

C(n)e2πian/N =
∑

n∈C

e2πian/N .
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Throughout the paper, when working with Fourier transforms, we will
use a slightly compressed form of summation notation, by introducing the
sigma operator, defined by

Σn f(n) =
∑

n∈ZN

f(n).

We also define define the norms

||f ||t = (E|f(n)|t)1/t,

which is the usual t-norm where we take our measure to be the uniform
measure on ZN .

With our definition of norms, Hölder’s inequality takes the form

||f1f2 · · · fn||b ≤ ||f1||b1 ||f2||b2 · · · ||fn||bn , if
1

b
=

1

b1
+ · · · + 1

bn
,

although we will ever only need this for the product of two functions, and
where the ai and bi are 1 or 2 (i.e. Cauchy-Schwarz).

In our proofs we will make use of Parseval’s identity, which says that

||f̂ ||22 = N ||f ||22

This implies that
||Ĉ||22 = N |C|.

We will also use Fourier inversion, which says

f(n) = N−1Σae
−2πan/N f̂(a).

Another basic fact we will use is that

Λ3(f) = N−3Σa f̂(a)2f̂(−2a).

3 Key Lemmas

Here we list some key lemmas we will need in the course of our proof of
Theorems 1 and 2.
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Lemma 1 Suppose h : ZN → [0, 1], and let C denote the set of all values
a ∈ ZN for which

|ĥ(a)| ≥ βĥ(0).

Then,
|C| ≤ (βĥ(0))−2N2.

Proof of the Lemma. This is an easy consequence of Parseval:

|C|(βĥ(0))2 ≤ N ||ĥ||22 = N2||h||22 ≤ N2. �

Lemma 2 Suppose that f, g : ZN → [−2, 2] have the property

||f̂ − ĝ||∞ < βN.

Then,
|Λ3(f) − Λ3(g)| < 12β.

Proof of the Lemma. The proof is an exercise in multiple uses of Cauchy-
Schwarz (or Hölder’s inequality) and Parseval.

First, let δ(a) = f̂(a) − ĝ(a). We have that

Λ3(f) = N−3Σaf̂(a)2(ĝ(−2a) + δ(−2a))

= N−3Σaf̂(a)2ĝ(−2a) + E1,

where by Parseval’s identity we have that the error E1 satisfies

|E1| ≤ N−2||δ||∞||f̂ ||22 = N−1||δ||∞||f ||22 < 4β.

Next, we have that

N−3Σaf̂(a)2ĝ(−2a) = N−3Σaf̂(a)(ĝ(a) + δ(a))ĝ(−2a)

= N−3Σaf̂(a)ĝ(a)ĝ(−2a) + E2,

where by Parseval again, along with Cauchy-Schwarz (or Hölder’s inequal-
ity), we have that the error E2 satisfies

|E2| ≤ N−2||f̂(a)ĝ(−2a)||1||δ||∞ < βN−1||f̂ ||2||ĝ||2 ≤ 4β.
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Finally,

N−3Σaf̂(a)ĝ(a)ĝ(−2a) = N−3Σa(ĝ(a) + δ(a))ĝ(a)ĝ(−2a)

= Λ3(g) + E3,

where by Parseval again, along with Cauchy-Schwarz (Hölder), we have that
the error E3 satisfies

|E3| ≤ N−2||δ||∞||ĝ(a)ĝ(−2a)||1 < βN−1||ĝ||22 = β||g||22 ≤ 4β.

Thus, we deduce

|Λ3(f) − Λ3(g)| < 12β. �

The following Lemma and the Proposition after it make use of ideas
similar to the “granularization” methods from [2] and [3].

Lemma 3 For every t ≥ 1, 0 < ε < 1, the following holds for all primes p
sufficiently large: Given any set of residues {b1, ..., bt} ⊂ Zp, there exists a
weight function µ : Zp → [0, 1] such that

• µ̂(0) = 1 (in other words, E(µ) = p−1);
• |µ̂(bi) − 1| < ε2, for all i = 1, 2, ..., t; and,
• ||µ̂||1 ≤ p−1(6ε−1)t.

Proof. We begin by defining the functions y1, ..., yt : Zp → [0, 1] by defining
their Fourier transforms: Let ci ≡ b−1

i (mod p), L = bεp/10c, and define

ŷi(a) = (2L + 1)−1
(

Σ|j|≤Le2πiacij/p
)2

∈ R≥0.

It is obvious that 0 ≤ yi(n) ≤ 1, and yi(0) = 1. Also note that

yi(n) 6= 0 implies bin ≡ j (mod p), where |j| ≤ 2L. (1)

Now we let v(n) = y1(n)y2(n) · · · yt(n). Then,

v̂(a) = p−t+1(ŷ1 ∗ ŷ2 ∗ · · · ∗ ŷt)(a)

= p−t+1Σr1+···+rt≡a ŷ1(r1)ŷ2(r2) · · · ŷt(rt). (2)
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Now, as all the terms in the sum are non-negative reals we deduce that for
p sufficiently large,

p > v̂(0) ≥ p−t+1ŷ1(0) · · · ŷt(0) = p−t+1(2L + 1)t

> (ε/6)tp. (3)

We now let µ(a) be the weight whose Fourier transform is defined by

µ̂(a) = v̂(0)−1v̂(a). (4)

Clearly, µ(a) satisfies conclusion 1 of the lemma.
Consider now the value µ̂(bi). As µ(n) 6= 0 implies yi(n) 6= 0, from (1)

we deduce that if µ(n) 6= 0, then for some |j| ≤ 2L,

Re(e2πibin/p) = Re(e2πij/p) = cos(2πj/p) ≥ 1 − 1

2
(2πε/5)2 > 1 − ε2.

So, since µ̂(bi) is real, we deduce that

µ̂(bi) = v̂(0)−1Σnv(n)e2πibin/p > 1 − ε2.

So, our weight µ(n) satisfies the second conclusion of our Lemma.
Now, then, from (2), (4), and (3) we have that

||û||1 = p−tv̂(0)−1Σa Σr1+···+rt≡a ŷ1(r1)ŷ2(r2) · · · ŷt(rt)

= p−tv(0)−1
t

∏

i=1

Σrŷi(r)

= v̂(0)−1y1(0)y2(0) · · · yt(0)

= v̂(0)−1

< p−1(6ε−1)t. �

Next we have the following Proposition, which is an extended corollary
of Lemmas 2 and 3:

Proposition 1 For every ε > 0, p > p0(ε) prime, and every f : Zp → [0, 1],
there exists a periodic function g : R → R with period p satisfying:

• E(g) = E(f) (Here when we compute the expectation of g we restrict
to g : Zp → R.)

• g : R → [−2ε, 1 + 2ε].
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• There is a set of integers c1, ..., cm, m < m0(ε), such that for α ∈ R,

g(α) = p−1Σ1≤i≤me−2πiciα/pĝ(ci).

The Fourier transforms ĝ(ci) are gotten by restricting g : Zp → R, which is
possible by the periodicity of g.

• The ci satisfy |ci| < p1−1/m.
• |Λ3(g) − Λ3(f)| < 25ε.

Proof of the Proposition. We will need to define a number of sets and
functions in order to begin the proof: Define

B = {a ∈ Zp : |f̂(a)| > εf̂(0)},

and let t = |B|. Define

B′ = {a ∈ Zp : |f̂(−2a)| or |f̂(a)| > ε(ε/6)tf̂(0)},

and let m = |B′|. Note that B ⊆ B′ implies t ≤ m. Lemma 1 implies that
m < m0(ε), where m0(ε) depends only on ε.

Let µ : Zp → [0, 1] be as in Lemma 3 with parameter ε and with
{b1, ..., bt} = B.

Let 1 ≤ s ≤ p − 1 be such that for every b ∈ B ′,

if c ≡ sb (mod p), |c| < p/2, then |c| < p1−1/m.

Such s exists by the Dirichlet Box Principle. Let c1, ..., cm be the values c
so produced. 2

Define
h(n) = (µ ∗ f)(sn) = Σa+b≡nµ(sa)f(sb).

We have that h : Zp → [0, 1] and

ĥ(a) = µ̂(s−1a)f̂(s−1a).

Note that
ĥ(ci) = µ̂(b)f̂(b), for some b ∈ B′.

Finally, define g : R → R to be

g(α) = p−1Σ1≤i≤me−2πiciα/pĥ(ci),

2Here is where we are using the fact that p is prime: We need it in order that c1, ..., cm

are distinct.
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which is a truncated inverse Fourier transform of ĥ. We note that if |α−β| <
1, then since |ci| < p1−1/m we deduce that

|g(α) − g(β)| < p−1m
∣

∣

∣
e2πi(α−β)p−1/m − 1

∣

∣

∣
sup

i
|ĥ(ci)| < ε, (5)

for p sufficiently large.

This function g clearly satisfies the first property

ĝ(0) = ĥ(0) = µ̂(0)f̂(0) = f̂(0).

(Fourier transforms are with respect to Zp).

Next, suppose that n ∈ Zp. Then,

g(n) = h(n) − p−1Σc6=c1,...,cm
e−2πicn/pµ̂(s−1c)f̂(s−1c) = h(n) − δ,

where

|δ| ≤ ||µ̂||1 sup
c6=c1,...,cm

|f̂(s−1c)| = ||µ̂||1 sup
b∈Zp\B′

|f̂(b)| < ε.

From this, together with (5) we have that for α ∈ R, g(α) ∈ [−2ε, 1+2ε],
as claimed by the second property in the conclusion of the proposition.

Next, we observe that

Λ3(g) = Λ3(h) − E,

where

|E| ≤ p−3Σc6=c1,...,cm
|ĥ(c)|2|ĥ(−2c)| < ε(ε/6)tp−1||ĥ||22

≤ ε2/6.

To complete the proof of the Proposition, we must relate Λ3(h) to Λ3(f):
We begin by observing that if b ∈ B, then

|f̂(b) − ĥ(sb)| = |f̂(b)||1 − µ̂(b)| < ε2p. (6)

Also, if b ∈ Zp \ B, then

|f̂(b) − ĥ(sb)| < 2|f̂(b)| < 2εp.
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Thus,
||f̂(a) − ĥ(sa)||∞ < 2εp.

From Lemma 2 with β = 2ε we conclude that

|Λ3(f) − Λ3(h)| < 24ε.

So,
|Λ3(f) − Λ3(g)| < 25ε. �

Finally, we will require the following two technical lemmas, which are
used in the proof of Theorem 2:

Lemma 4 Suppose p is prime, and suppose that S ⊆ Zp satisfies

p/3 < |S| < 2p/5.

Let r(n) be the number of pairs (s1, s2) ∈ S×S such that n = s1 +s2. Then,
if T ⊆ Zp, and p is sufficiently large, we have

Σn∈T r(n) < 0.93|S|(|S||T |)1/2 .

Proof of the Lemma. First, observe that if 1 ≤ a ≤ p− 1, then among all
subsets S ⊆ Zp of cardinality at most p/2, the one which maximizes |Ŝ(a)|
satisfies

|Ŝ(a)| =
∣

∣

∣
1 + e2πi/p + e4πi/p + · · · + e2πi(|S|−1)/p

∣

∣

∣
=

|e2πi|S|/p − 1|
|e2πi/p − 1|

=
| sin(π|S|/p)|
| sin(π/p)| .

Since |θ| > π/3 we have that

| sin(θ)| <
sin(π/3)|θ|

π/3
=

3
√

3|θ|
2π

.

This can be seen by drawing a line passing through (0, 0) and (π/3, sin(π/3)),
and realizing that for θ > π/3 we have sin(θ) lies below the line. Thus, since
p/3 < |S| < 2p/5 we deduce that for a 6= 0,

|Ŝ(a)| <
3
√

3|S|
2p| sin(π/p)| ∼ 3

√
3|S|

2π
.
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Thus, by Parseval,

||S ∗ S||22 = p−1||Ŝ||44 ≤ p−2|S|4 + p−1(||Ŝ||22 − p−1|S|2) sup
a6=0

|Ŝ(a)|2

< 0.856p−1|S|3,

for p sufficiently large.
By Cauchy-Schwarz we have that

Σn∈T r(n) ≤ |T |1/2
(

Σnr(n)2
)1/2

= |T |1/2p1/2||S ∗ S||2
< 0.93|S|(|S||T |)1/2 . �

Lemma 5 Suppose N ≥ 3 is odd, and suppose A ⊆ ZN , |A| = υN . Let A′

denote the complement of A. Then,

Λ3(A) + Λ3(A
′) = 3υ2 − 3υ + 1

Proof. The proof is an immediate consequence of the fact that Â′(0) =
(1 − υ)N , together with Â(a) = −Â′(a) for 1 ≤ a ≤ N − 1. For then, we
have

Λ3(A) + Λ3(A
′) = N−3ΣaÂ(a)2Â(−2a) + Â′(a)Â′(−2a)

= υ3 + (1 − υ)3

= 3υ2 − 3υ + 1. �

4 Proof of Theorem 1

To prove the theorem it suffices to show that for every 0 < ε, υ < 1, every
pair of primes p, r with r > p3 > p0(ε), and every function f : Zp → [0, 1]
satisfying E(f) ≥ υ, there exists a function ` : Zr → [0, 1] satisfying E(`) ≥
υ, such that

Λ3(`) < Λ3(f) + ε (7)

This then implies
ρ(υ, r) < ρ(υ, p) + ε,
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and then our theorem follows (because then ρ(r, υ) is approximately decreas-
ing as r runs through the primes.)

To prove (7), let f : Zp → [0, 1] satisfy E(f) ≥ υ. Then, applying
Proposition 1 we deduce that there is a map g : R → R satisfying the
conclusion of that proposition. Let c1, ..., cm, |ci| < p1−1/m be as in the
proposition.

Define

h(α) = p−1Σ1≤i≤me−2πiαci/rĝ(ci) = g(αp/r) ∈ [−2ε, 1 + 2ε].

(The Fourier transforms ĝ(ci) are computed with respect to Zp.) If we re-
strict to integer values of α, then we have that h has the following properties

• h : Zr → [−2ε, 1 + 2ε].
• E(h) = E(g) ≥ υr. (Here, E(g) is computed by restricting to

g : Zp → R.)

• For |a| < r/2 we have ĥ(a) 6= 0 if and only if a = ci for some i, where
|ci| < p1−1/m, in which case ĥ(ci) = rĝ(ci)/p.

From the third conclusion we get that

Λ3(h) = r−3Σ1≤i≤mĥ(ci)
2ĥ(−2ci) = Λ3(g).

Then, from the final conclusion in Proposition 1 we have that

Λ3(h) < Λ3(f) + 25ε. (8)

This would be the end of the proof of our theorem were it not for the
fact that h : Zr → [−2ε, 1 + 2ε], instead of Zr → {0, 1}. This is easily fixed:
First, we let `0 : Zr → [0, 1] be defined by

`0(n) =







h(n), if h(n) ∈ [0, 1];
0, if h(n) < 0;
1, if h(n) > 1.

We have that

|`0(n) − h(n)| ≤ 2ε, and therefore || ˆ̀0 − ĥ||∞ < 2εr.
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It is clear that by reassigning some of the values of `0(n) we can produce a
map ` : Zr → [0, 1] such that 3

E(`) = E(h), and || ˆ̀− ĥ||∞ < 4εr.

From Lemma 2 we then deduce

|Λ3(`) − Λ3(h)| < 48ε;

and so,
E(`) = E(f), and Λ3(`) < Λ3(f) + 73ε.

Our theorem is now proved on rescaling the 73ε to ε. �

5 Proof of Theorem 2

A consequence of Lemma 5 is that for a given density υ, the sets A ⊆ ZN

which minimize Λ3(A) are exactly those which maximize Λ3(A
′). If 3|N and

υ = 2/3, clearly if we let A′ be the multiplies of 3 modulo N , then Λ3(A
′)

is maximized and therefore Λ3(A) is minimized. In this case, for every pair
m,m+d ∈ A′ we have m+2d ∈ A′, and so Λ3(A

′) = (1−υ)2. By Lemma 5

Λ3(A) = 3υ2 − 3υ + 1 − (1 − υ)2 = 2υ2 − υ = 2/9.

So,
ρ(2/3, N) = 2/9.

The idea now is to show that

lim
p→∞

p prime

ρ(2/3, p) 6= 2/9.

Suppose p ≡ 1 (mod 3) and that A ⊆ Zp minimizes Λ3(A) subject to
|A| = (2p + 1)/3. Let S = Zp \ A, and note that |S| = (p − 1)/3. Let
T = 2 ∗ S = {2s : s ∈ S}.

Now, if r(n) is the number of pairs (s1, s2) ∈ S×S satisfying s1+s2 = n,
then by Lemma 4 we have

Λ3(S) = p−2
∑

n∈T

r(n) < 0.93p−2|S|(|S||T |)1/2 < 0.93/9,

3If ˆ̀
0(0) > ĥ(0), then we reassign some of values of `0(n) from 1 to 0, so that we then

get ĥ(0) ≤ ˆ̀
0(0) < ĥ(0) + 1, and then we change one more value of `0(n) from 1 to some

0 < δ ≤ 1 to produce ` : Zr → [0, 1] satisfying ˆ̀(0) = ĥ(0); likewise, if ˆ̀
0(0) < ĥ(0), we

reassign some values ˆ̀
0(n) from 0 to 1.
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for all p sufficiently large. So, by Lemma 5 we have that

Λ3(A) > 0.23,

and therefore
ρ(2/3, p) > 0.23 > 2/9

for all sufficiently large primes p ≡ 1 (mod 3). This finishes the proof of
the theorem. �
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