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Abstract

How few three-term arithmetic progressions can a subset S C Zy :=
Z/NZ have if |S| > vN? (that is, S has density at least v). Varna-
vides [4] showed that this number of arithmetic-progressions is at least
c(v)N? for sufficiently large integers N; and, it is well-known that de-
termining good lower bounds for ¢(v) > 0 is at the same level of depth
as Erdos’s famous conjecture about whether a subset T' of the natu-
rals where ) ;. 1/n diverges, has a k-term arithmetic progression for
k = 3 (that is, a three-term arithmetic progression).

The author answers a question of B. Green [1] about how this min-
imial number of progressions oscillates for a fixed density v as N runs
through the primes, and as N runs through the odd positive integers.

1 Introduction

Given an integer N > 2 and a mapping f : Zy — C define

Ms(D) = Ma(FiN) i=  Eqen, (Fn)f(n+ d)f(n +24)
= = X St dfn e+ 2a)

n,d€Z N
where E is the expectation operator, defined for a function g : Zy — C to
be 1
E(g) = Enlg) = « >_ 9(n).
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If S C Zy, and if we identify S with its indicator function S(n), which is
Oifn¢ Sandis1ifn €S, then A3(S) is a normalized count of the number
of three-term arithmetic progressions a, a + d, a + 2d in the set S, including
trivial progressions a, a, a.

Given v € (0, 1], consider the family F(v) of all functions
f:Zn —[0,1], such that E(f) > v.

Then, define
v,N) := min Ag(f).
P( ) FEF() 3( )

From an old result of Varnavides [4] we know that
As(f) > c(v) > 0,

where ¢(v) does not depend on N. A natural and interesting question (posed
by B. Green [1]) is to determine whether for fixed v

lim (v, p) exists?

p prime

In this paper we answer this question in the affirmative:

Theorem 1 For a fized v € (0,1] we have

lim p(v,p) exists.

p—00
p prime

Call the limit in this theorem p(v). Then, this theorem has the following
immediate corollary:

Corollary 1 For a fized v € (0,1], let S be any subset of Zn such that
A3(S) is minimal subject to the constraint |S| > vN. Let pa2(v, N) = A3(S).
Then,

lim pa(v,p) = p(v).

p prime

!The harder, and more interesting question, also asked by B. Green, which we do not
answer in this paper, is to give a simple formula for this limit.



Given Theorem 1, the proof of the corollary is standard, and just amounts
to applying a functions-to-sets lemma, which works as follows: Given f :
Zn — [0,1], E(f) = v, we let Sy be a random subset of Zy where P(s €
So) = f(s). It is then easy to show that with probability 1 — 0,(1),

E(S(]) ~ E(f), and A3(So) ~ Ag(f)

So, there will exist a set S; with these two properties (an instantiation of
the random set Sp). Then, by adding only a small number of elements to
S as needed, we will have a set S satisfying

[S| = oN, and A3(S) ~ As(f).

We will also prove the following;:
Theorem 2 For v = 2/3 we have that

lim p(v, N') does not exist,
N odd

where here we consider all odd N, not just primes.

Thus, in our proof of Theorem 1 we will make special use of the fact that
our moduli are prime.

2 Basic Notation on Fourier Analysis

Given an integer N > 2 (not necessarily prime), and a function f : Zy — C,
we define the Fourier transform

fla) = 3 flmermeniy,

neZn

Thus, the Fourier transform of an indicator function C'(n) for a set C' C Zy

1S:
N-1

C«(a) — Zc(n)e27rian/N — Ze2m'an/N.

n=0 neC



Throughout the paper, when working with Fourier transforms, we will
use a slightly compressed form of summation notation, by introducing the
sigma operator, defined by

Yo f(n) = Y f(n).

neLN

We also define define the norms

1£1le = (EIfF())",

which is the usual t-norm where we take our measure to be the uniform
measure on Zy.
With our definition of norms, Hélder’s inequality takes the form

o1
1ffoefullo < (Al 1 follos - [fnllons 3 3= 4 5

although we will ever only need this for the product of two functions, and
where the a; and b; are 1 or 2 (i.e. Cauchy-Schwarz).
In our proofs we will make use of Parseval’s identity, which says that

1£113 = NIIfI3

This implies that
IC13 = NIC|.

We will also use Fourier inversion, which says

fn) = N7'Y,e /N f(a).

Another basic fact we will use is that

As(f) = N73%, f(a)*f(—2a).

3 Key Lemmas

Here we list some key lemmas we will need in the course of our proof of
Theorems 1 and 2.



Lemma 1 Suppose h : Zy — [0,1], and let C denote the set of all values
a € Zy for which ) R
\h(a)] = Bh(0).

Then,
C| < (Bh(0))*N*.

Proof of the Lemma. This is an easy consequence of Parseval:

Cl(BR(0))* < N|IAll3 = N[l <N?. o

Lemma 2 Suppose that f,g: Zn — [—2,2] have the property

1 —dlle < BN.

Then,
[As(f) — As(g)] < 128

Proof of the Lemma. The proof is an exercise in multiple uses of Cauchy-
Schwarz (or Hélder’sAinequality) and Parseval.
First, let d(a) = f(a) — g(a). We have that

As(f) = N7*3.f(a)*(9(—2a) + 6(—2a))
N73Y,f(a)%§(—2a) + Ei,

where by Parseval’s identity we have that the error E satisfies
1Bl < N0l £13 = N7HISllolIF113 < 48
Next, we have that

N353, f(a)?§(—2a)

N_?’Zaf(a)(ﬁ(a) +6(a))g(—2a)
N7°%,f(a)§(a)g(~2a) + Ex,

where by Parseval again, along with Cauchy-Schwarz (or Hélder’s inequal-
ity), we have that the error Fy satisfies

B2 < N2 f(@)d(=2a)[[1]13]lec < BNTYIfll2llgll2 < 45



Finally,

N3, f@)g(a)g(—2a) = N7%,(4(a) + d(a))g(a)g(—2a)
As(g) + Es,

where by Parseval again, along with Cauchy-Schwarz (Holder), we have that
the error E5 satisfies

B3| < N72|0lloollg(a)a(—20)|1 < BNYIgl3 = Bllgllz < 48.
Thus, we deduce

|A3(f) — As(g)] < 125. W

The following Lemma and the Proposition after it make use of ideas
similar to the “granularization” methods from [2] and [3].

Lemma 3 For everyt > 1, 0 < € < 1, the following holds for all primes p
sufficiently large: Given any set of residues {b1,...,b;} C Z,, there exists a
weight function p : Z, — [0,1] such that

e /i(0) = 1 (in other words, E(u) =p~1);

o |u(b;) — 1| < €2, foralli=1,2,....t; and,

o llalli < pH(6e )

Proof. We begin by defining the functions y1, ...,y : Z, — [0,1] by defining
their Fourier transforms: Let ¢; = b; ' (mod p), L = [ep/10], and define

jgila) = (2L + 1)1 <ZU|SL62m'acij/p>2 € Roo.
It is obvious that 0 < y;(n) <1, and y;(0) = 1. Also note that
yi(n) # 0 implies bjn =j (mod p), where |j| < 2L. (1)
Now we let v(n) = y1(n)y2(n) - - y¢(n). Then,

d(a) = p TG xgox G (a)
= p Y r=a G1(r1)P2(r2) - Gu(r). (2)



Now, as all the terms in the sum are non-negative reals we deduce that for
p sufficiently large,

p > @(0) > p—t-i—l:gl(o) - gt(o) — p—t+1(2L + 1)t
> (¢/6)'p. (3)
We now let p(a) be the weight whose Fourier transform is defined by
ila) = 9(0)"'o(a). (4)

Clearly, p(a) satisfies conclusion 1 of the lemma.
Consider now the value fi(b;). As pu(n) # 0 implies y;(n) # 0, from (1)
we deduce that if u(n) # 0, then for some |j| < 2L,

. . 1
Re(e?™/P) = Re(e2™/P) = cos(2mj/p) > 1—5(27re/5)2 > 1— €.
So, since fi(b;) is real, we deduce that

a(b) = 9(0)7'Y,u(n)e? i/ 5 1 2,

So, our weight ;(n) satisfies the second conclusion of our Lemma.
Now, then, from (2), (4), and (3) we have that

Nalli = p7'9(0) 'S0 Xt trma G1(r1)J2(r2) - - Ge(re)

Next we have the following Proposition, which is an extended corollary
of Lemmas 2 and 3:

Proposition 1 For every e > 0, p > po(e) prime, and every f : Z, — [0,1],
there exists a periodic function g : R — R with period p satisfying:

e E(g) = E(f) (Here when we compute the expectation of g we restrict
tog:Zy,—R.)

e g:R —[—2¢1+2¢.



e There is a set of integers c1, ..., Cm, m < mg(€), such that for a € R,
R | —27icio/p A .
gla) = p Elgigme g(cq).

The Fourier transforms §(c;) are gotten by restricting g : Z, — R, which is
possible by the periodicity of g.

o The ¢; satisfy |c;| < p*=/™.

* [As(g) — As(f)] < 25e.

Proof of the Proposition. We will need to define a number of sets and
functions in order to begin the proof: Define

B = {a€Z : |f(a)>cfO)},
and let ¢t = |B|. Define
B' = {a€Z, : |[f(=2a)| or |f(a)] > e(¢/6)"f(0)},

and let m = |B’|. Note that B C B’ implies ¢ < m. Lemma 1 implies that
m < mq(€e), where mg(€) depends only on e.

Let p @ Z, — [0,1] be as in Lemma 3 with parameter e and with
{b1,....b} = B.

Let 1 < s < p—1 be such that for every b € B/,

if ¢ = sb (mod p),|c| < p/2, then |c| < p'~ /™.

Such s exists by the Dirichlet Box Principle. Let cq,..., ¢, be the values ¢
so produced. 2
Define

h(n) = (/’L*f)(sn) = Ea—l—bzn:u(sa)f(Sb)'
We have that h : Z, — [0,1] and

h(a) = p(s™'a)f(s™ ).

Note that R R
h(c;) = fu(b)f(b), for some b € B’

Finally, define g : R — R to be
g(a) = p_lZlgigme_zmcia/pil(ci)a

2Here is where we are using the fact that p is prime: We need it in order that ci, ..., ¢m
are distinct.




which is a truncated inverse Fourier transform of . We note that if la—p] <
1, then since |¢;| < p'~'/™ we deduce that

lg(a) — g(B)] < p~lm|2m @ _lsupli(e)| < € (5)

for p sufficiently large.
This function g clearly satisfies the first property
§0) = h(0) = A0)f(0) = f(0).
(Fourier transforms are with respect to Z,).

Next, suppose that n € Z,. Then,

g(n) = h(n) =™ Verer,...cn€ T PU(sT ) f(sTIe) = h(n) =4,

6] < llalh sup  [f(sro)l = llalh sup [f(B)] < e
bEZp\ B!

CHCly.Cm

From this, together with (5) we have that for & € R, g(«a) € [—2¢,1+2¢],
as claimed by the second property in the conclusion of the proposition.

Next, we observe that

where

N

e(e/6)'p~1RII3
< /6.

Bl < 7 Eeser,.cnl () PR(=20)]
To complete the proof of the Proposition, we must relate As(h) to As(f):
We begin by observing that if b € B, then
1F(b) = h(sb)| = |f®)IIL = ad)] < p. (6)
Also, if b € Zy \ B, then

1f(0) = h(sb)| < 2f(b)] < 2ep.



Thus, X X
1f(a) = h(sa)llc < 2ep.

From Lemma 2 with 8 = 2¢ we conclude that
[A3(f) — As(h)| < 24e.

So,
|A3(f) — As(g)] < 25¢. W

Finally, we will require the following two technical lemmas, which are
used in the proof of Theorem 2:

Lemma 4 Suppose p is prime, and suppose that S C Z, satisfies
p/3 < |S| < 2p/5.

Let r(n) be the number of pairs (s1,s2) € S xS such that n = s;+ s2. Then,
if T C Zy, and p s sufficiently large, we have

Ynerr(n) < 0.93S|(|S||T])"2.

Proof of the Lemma. First, observe that if 1 < a < p— 1, then among all
subsets S C Z,, of cardinality at most p/2, the one which maximizes |S(a)|
satisfies
je2mils|/p _ 1|
‘627ri/p _ 1’
| sin(7|S|/p)|
| sin( /p)]

1S(a)] = |14 ¥/P 4 etmilp oy 2mllSI=1/p

Since |0| > 7/3 we have that

sin(7/3)|0] 3\/5\01'

|sin(9)| < 73 o

This can be seen by drawing a line passing through (0, 0) and (7 /3, sin(7/3)),
and realizing that for § > /3 we have sin(#) lies below the line. Thus, since
p/3 < |S| < 2p/5 we deduce that for a # 0,

3v/3[9] 3v3[S|

oplsin(n/p)] ~  2r

S(a)] <

10



Thus, by Parseval,
1S« S[15 = p7 IS < 2SI + 7N (ISI —19‘1|S|2)Sl71é£0>IS(a)I2
< 0.856p~ 1S3,

for p sufficiently large.
By Cauchy-Schwarz we have that

Swerr(n) < TV (Sor(n)?) 2
T[2p 2118 5 Sz
< 0.93S|(|S||T)Y?. =

Lemma 5 Suppose N > 3 is odd, and suppose A C Zy, |A| = vN. Let A’
denote the complement of A. Then,

Az(A) +A3(A) = 302 —3v+1

Proof. The proof is an immediate consequence of the fact that A(0) =
(1 —v)N, together with A(a) = —A’(a) for 1 < a < N — 1. For then, we
have

As(A) + A3(A) = N73%,A(a)?A(—2a) + A'(a)A'(—2a)
= ¥4+ (1-v)?
= 3*-3v+1. N

4 Proof of Theorem 1

To prove the theorem it suffices to show that for every 0 < €,v < 1, every
pair of primes p,r with r > p? > pg(e), and every function f : Z, — [0,1]
satisfying E(f) > v, there exists a function ¢ : Z, — |0, 1] satisfying E(¢) >
v, such that

As(0) < As(f) +e (7)

This then implies
p(v,r) < p(v,p) + e

11



and then our theorem follows (because then p(r,v) is approximately decreas-
ing as r runs through the primes.)

To prove (7), let f : Z, — [0,1] satisfy E(f) > v. Then, applying
Proposition 1 we deduce that there is a map ¢ : R — R satisfying the
conclusion of that proposition. Let ¢1,...,cm, || < p'~Y™ be as in the
proposition.

Define

—2miac; [T 4

ha) = p‘lElgigme g(ci) = glap/r) € [-2¢,1+ 2¢l.

(The Fourier transforms §(c;) are computed with respect to Z,.) If we re-
strict to integer values of «, then we have that h has the following properties

o h:Zy — [—2¢,1+ 2€.

e E(h) = E(9) > wr. (Here, E(g) is computed by restricting to
g:Z,—R.)

e For |a| < /2 we have h(a) # 0 if and only if a = ¢; for some i, where
les| < p'=1/™  in which case h(c;) = rg(c;)/p.

From the third conclusion we get that
As(h) = r_321§i§mﬁ(ci)2ﬁ(_26i) = A3(9).
Then, from the final conclusion in Proposition 1 we have that

As(h) < As(f) + 25e. (8)

This would be the end of the proof of our theorem were it not for the
fact that h : Z, — [—2¢,1 + 2¢], instead of Z,, — {0,1}. This is easily fixed:
First, we let ¢y : Z, — [0, 1] be defined by

h(n), if h(n) € [0, 1);
lo(n) = 0, if h(n) <O0;
1, if A(n) > 1.
We have that

[0o(n) — h(n)| < 2¢, and therefore ||y — h||so < 2er-.

12



It is clear that by reassigning some of the values of ¢y(n) we can produce a
map £ : Z, — [0,1] such that 3

E(() = E(h), and |[{ — h||oo < 4er.
From Lemma 2 we then deduce
[A3(€) — As(h)| < 48
and so,

E(f) = ]E(f), and A3(€) < Ag(f)+73€.

Our theorem is now proved on rescaling the 73e toe. W

5 Proof of Theorem 2

A consequence of Lemma 5 is that for a given density v, the sets A C Z
which minimize A3(A) are exactly those which maximize A3(A’). If 3| N and
v = 2/3, clearly if we let A’ be the multiplies of 3 modulo N, then Ag(4’)
is maximized and therefore A3(A) is minimized. In this case, for every pair
m,m+d € A’ we have m+2d € A’, and so A3(A") = (1 —v)?. By Lemma 5

Az(A) = 302 —3v+1-(1-v)? = 2> —v = 2/9.
So,
p(2/3,N) = 2/9.
The idea now is to show that

lim p(2/3,p) # 2/9.

p prime
Suppose p =1 (mod 3) and that A C Z, minimizes A3(A) subject to
Al = 2p+1)/3. Let S = Z, \ A, and note that |S| = (p — 1)/3. Let
T=2xS5S={2s:s5€S}.
Now, if (n) is the number of pairs (s1, s2) € S x S satisfying s1+s2 = n,
then by Lemma 4 we have

As(S) = p2> r(n) < 0.93p72S|(|SITN'? < 0.93/9,
neT

31f £o(0) > h(0), then we reassign some of values of £o(n) from 1 to 0, so that we then
get h(0) < £o(0) < h(0) + 1, and then we change one more value of £o(n) from 1 to some
0 < 6 <1 to produce £ : Z, — [0,1] satisfying £(0) = h(0); likewise, if £o(0) < h(0), we
reassign some values fo(n) from 0 to 1.

13



for all p sufficiently large. So, by Lemma 5 we have that
Ag(A) > 0.23,

and therefore
p(2/3,p) > 023 > 2/9

for all sufficiently large primes p =1 (mod 3). This finishes the proof of
the theorem. W
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