UNIT FRACTIONS AND THE CLASS
NUMBER OF A CYCLOTOMIC FIELD

ERNEST S. CroOT III AND ANDREW GRANVILLE

ABSTRACT. We further examine Kummer’s incorrect conjectured asymptotic esti-
mate for the size of the first factor of the class number of a cyclotomic field.

1. INTRODUCTION

Let h(p) be the class number of the cyclotomic field Q((,) (where ¢, is a primitive
pth root of unity) and hy(p) be the class number of the real subfield Q((, + Cp_l).
Kummer proved that the ratio hq(p) = h(p)/h2(p) is an integer which he called the
first factor of the class number, and in 1850 wrote in [8], “La loi asymptotique des
valeurs de ce premier facteur du nombre des classes H est exprimée par la formule

p—1

(1) mp)~2p(15) =G

dont je me reserve la demonstration ...” This proof never appeared and in [3] the
second author showed that (1) is false if we assume two well-known conjectures of
analytic number theory: First, Hardy and Littlewood’s conjecture [5] that there are
> z/log” x primes p <  for which 2p+ 1 is also prime, and secondly the following
conjecture on the distribution of primes in arithmetic progression “on average”.
Let m(z;q,a) denote the number of primes p < z with p = a (mod q).

Conjecture EH (Elliott and Halberstam [1]). For any fized ¢ > 0, A > 0,

Y Ir(wig, 1) — w(wg,—1)] e

q<CL‘1_E

log z’

Despite this result, Kummer’s law (1) does actually hold for almost all primes
p, as was proved by Murty and Petridis in [9], assuming just Conjecture EH. In
this paper we carefully study the set of exceptions to (1), under the assumption of
suitable conjectures. We again use conjecture EH, but here we will need a more
precise and more general version of the Hardy-Littlewood conjecture:
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Conjecture HL2 (Hardy and Littlewood [5]). Suppose that a;x + b; are distinct
polynomials with integer coefficients, 1 < 1 < k. Define w(p) to be the number of
distinet solutions r (mod p) to (arr 4+ by)(azr +b2)...(agr+bg) =0 (mod p), and
suppose w(p) < p for all primes p. Then

—k
1
#{x <n <2z : Each a;p+ b; prime} ~ H (1 — M) <1 - —) :Ck
" p p log" x

as r — 0Q.

Note that if any w(p) = p then, for every integer n, some a;n + b; is divisible
by p, and so the k-tuple are only finitely often simultaneously prime. A set of
polynomials for which every w(p) < p is called “admissible”.

Theorem 1. Assume Conjectures EH and HL2.
(i) If a is a real number for which loga is rational then there exists an integer
B(a) > 1 and a constant Cy > 0 such that there are ~ C’ax/logB(O‘) x primes
p < & for which hi(p) ~ aG(p).
(Here, and throughout, “log” means log to base ¢)
(ii) Fiz A > 0. For any real number o for which loga is irrational there are
La ;L'/logA x primes p < x for which hy(p) ~ aG(p).

Theorem 1 implies that {hy(p)/G(p)} is dense in [0, oc], which was also proved
in Theorem 4 of [3]. The case o = 1 here implies that (1) holds for “almost all”
primes, which is Theorem 1.2 of [9]: Our proof of Theorem 1 was inspired by and,
restricted to this case is essentially the same as, the proof of Theorem 1.2 in [9].

Conjecture A in [3] claims that

(2) (log 1085?)_1/2+0(1) < hi(p)/G(p) < (log 10513‘110)1/2'1"’(1)7

and that these bounds are best possible. This gives some idea of how large and
small this ratio can be. It is also of interest to determine how often hy(p)/G(p) is
large and small.

Theorem 2. Assume Conjectures EH and HL2. For any given A > 1 there exuists
a constant K4 > 0 and an integer B(A) > 1 such that there are ~ HAa:/log’g(A) x
primes p < x for which hy(p) 2 AG(p). Similarly there are ~ /<JAJ}/10gﬁ(A).T
primes p < x for which hy(p) < G(p)/A.

Corollary 1. Assume Conjectures EH and HL2. There exist constants ¢1,C > 0

c1 ¢ B
such that G(p)/A < hi(p) < AG(p) for all but O(z/log® ! z) primes p < z, for
any fired A > 1.

The conjecture in (2) is suggested if Corollary 1 holds uniformly in a wide range
for A with C' = 2.

There are just two ideas here that do not appear in [3]. First, Hooley’s version
of the Brun-Titchmarsh theorem (see Lemma 3.1 below) as used in [9]; and second,
the following seemingly unrelated result on unit fractions:
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Proposition 2. For every rational number r there exists a finite set of integers M
with v =Y car 1/m such that, for every prime p, there exists a nonzero residue
class mod p which does not contain any element of the set M.

Another main ingredient, which appears in other works, is the following Propo-
sition.

Proposition 1. Assume Conjecture HL2 and fict an L > 1. Then, if M =
{my,....,my} is any set of integers so that

{z,miz+1,...,mpx + 1}

18 an admassible set of polynomuals, then for >, :zc/log'Ml"i'1 x primes p < x, we
have that

{m <L : |mp+ 1| s prime} = M.

Using various techniques from analytic number theory, we will show that

2log(m(p)/G(p) =p| D la— > La|+0m).

g=1 (mod p) g=—1 (mod p)

for all but O(z/ log” z) primes p < z, where both sums are over the primes ¢ < p/n,
and n > 0 is small. Thusif M = {m € Z: |mp+ 1| is prime and < p/n} then
2log(hi(p)/G(p)) = > pmerr 1/m + O(n). We now see how, from Proposition 2
and Conjecture HL2 we might deduce Theorem 1(i). Similarly since 7 -, 1/m is
always rational, we see how we might deduce Theorem 1(ii).

We now discuss, in terms of unit fractions, how we determine the constants
B(a),Cq, k4, 3(A) which appear in the two theorems above:

Define M to be those finite sets of distinct nonzero integers M such that for
every prime p there exists a nonzero residue class mod p, which does not contain
any element of the set M. If we define wys(p) to equal the number of distinct residue
classes (mod p) containing at least one element of {0} U M, then wys(p) < p for
every M € M. For any M € M let n(M) be the number of elements in M, let
N(M) =3 ,enm 1/m, and define II(M) =[], ((1 —wum(p)/p)/(1 — 1/p)nM+1),

Proposition 2 implies that ¥(M) = {E(M) : M € M} = Q. For any r € Q
define (by various abuses of notation) n(r) to be the smallest n such that there
exists M € M with n(M) = n for which (M) = r. We define II(r) = ) ,, II(M)
where the sum is over those M € M for which n(M) = n(r) and (M) = r. Note
that n(0) = 0 and II(0) = 1. The constants in Theorem 1(i) are defined, when « is
a real number for which r = 2log « is rational, by C, = II(r) and B(a) = n(r) + 1.
To obtain the constants used in Theorem 2, for any given A > 1 let 3(A) denote one
more than the size of the smallest set M € M such that 3(M) > 2log A. Then let
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ka = Y H(M) where the sum is over those M € M for which n(M) = §(A) —1
and S(M) > 2log A.

Let us note that that §(4) = 2 for 1 < A < €'/2. Evidently 3(4) is a non-
decreasing function, and we now discuss its rate of growth for large A. What is
obvious is that if (A) = N + 1 then 2log A <1/14+1/24---4+1/N <logN +1
so that B(A4) > 1+ A%/e. In fact since any set M € M has no elements in one
congruence class mod p, for each prime p, we see by the sieve that M has < z/log z
elements < z. Partial summation then reveals that ¥(M) < loglogn(M); and so
21log A < loglog B3(A); that is, log B(A) > A®, for some constant C' > 0. Inserting
this in Theorem 2 implies Corollary 1.

It would be nice to get some idea of the size of n(r), how it relates to the size
and height of r (and thus B(«)). Certainly our ad hoc construction used to prove
Proposition 2 seems unlikely to reveal the truth. We do know, from the argument
in the paragraph immediately above, that there exists a constant ¢; > 0 such
that n(r) > exp(exp(ci|r])). On the other hand, from the arguments in section 7
making our ad hoc construction explicit, we find that there exists a constant ¢; > 0
such that n(r) < exp(O(q)) exp(exp(exp(cz|r|))) where ¢ is the largest prime power
divisor of the denominator of r. Presumably this upper bound can be improved
though we hesitate to guess to what.

On a lighter note, we note that prime twin conjectures are essentially equivalent
to certain conjectures about hq(p):

Theorem 3A. Assume Conjecture EH, and let m be an even positive integer, with
§ = —1 or 1. There are >, x/log® z primes p < z for which mp+ § is also prime
if and only if hy(p) ~ G(p)e?/*™ for >, x/log® x primes p < x

One can even get an unconditional result along these lines:

Theorem 3B. Fiz ¢ > €2. If hi(p) > cG(p) for > z/log? x primes p < z
for all sufficiently large x, for some A > 0, then there exists an integer m for
which there are > ;L’/logA x primes p < x with mp + 1 also prime. Analogously if
hi(p) > G(p)/ec for > z/log? & primes p < z then there exists an integer m for
which there are > :z:/logA x primes p < x with mp — 1 also prime.

We remark that it would be awkward to show a general result exactly analogous
to Theorem 3A for prime triplets since ¥({4}) = £({6,12}), amongst many other
examples.

It is of interest to try to find an unconditional proof that (1) is false. This seems
unlikely in the near future since the ideas that go into Theorems 3 suggest that for
primes p for which (1) fails there must be primes mp + 1 with m small, something
that seems far from being unconditionally provable. (Indeed, it is not even known
that there are infinitely many primes p for which there is a prime mp + 1 with
m < pl/lo.) However, by the argument of Theorem 3B we have found that we
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can dispense with the assumption of Conjecture EH, at the expense of assuming a
stronger prime k-tuple conjecture than in [3]:

Theorem 4. Suppose that there exists a set M of k distinct positive integers with
| > menr L/m| > 4, such that there are > z/1log" & primes p < x for which mp+1
is also prime for every m € M. Then (1) fails for > z/log"t & primes p < z.

Note that by Proposition 2 and Conjecture HL2 we believe that there are many
sets M which satisfy the hypotheses of Theorem 4.

2. AN ANALYTIC EXPRESSION FOR hq(p)

Hasse [6] showed that the value of hq(p) is equal to G(p) times the product of
the L-functions of the odd characters x (mod p) at s = 1. By considering the value
of this expression as s goes towards 1 from above, one can deduce that

hi(p) = G(p)exp {Z%lfp} , where f, = 1:11—>Holo fp(z) and

AEED -1 DV T Y

qa qa
m>1 q prime,gM <z q prime,q™ <z
- q™ =1(modp) g™ =—1(modp)

Note that the statement hq(p) ~ G(p)e’/? is equivalent to f, ~ r/p. Moreover
Kummer’s conjecture, (1), may be restated as f, = o(1/p).

The expression for f, is a little unwieldy but by employing a number of results
of analytic number theory in [3] we showed how to simplify it:

e In Proposition 1 of [3] we showed that the prime powers in (3) contribute
o(1/p) to the total sum for all O(y/x log” z) primes p < z.

o At the start of section 3 of [3] we saw that a simple application of the Siegel-
Walfisz Theorem implies that f, = f,(2P) 4+ o(1/p), so that we can restrict our
attention to the finite sum f,(27).

A similar argument using the Bombieri-Vinogradov Theorem would allow us
to restrict our attention to the much smaller sum fp(p2+5) for any 6 > 0, for
all but OA(;L'/logA x) primes p < z. However, assuming conjecture EH, we have
fp = fo(p'F°) +0(1/p), for all but O 4(z/ log” x) primes p < z, by the argument in
Proposition 2 of [3]. Therefore

1 1 1
¥ e Yoo X ()
g<p'*’ g<p't?
g=1 (mod p) g=—1 (mod p)

for all but O(:z;/logA z) primes p < z.
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As in [9], the Brun-Titchmarsh Theorem ([4], Theorem 3.8) allows us to bound
the contribution to f, of primes ¢ between p' 19 and p?t? by an absolute constant.
Combining this with the rest of our arguments one can recover Theorem 1.1 of
[9], which states that hi(p) < G(p) for almost all primes p. Actually we use this
observation to prove Theorem 3B in section 8.

3. LEMMATA OLD AND NEW

We will use the following useful uniform version of the Brun-Titchmarsh theorem:

Lemma 3.1 (Hooley [7]). Let ¢ be a fized nonzero integer. Suppose A > B + 30.

If /Q <z < Q/log” Q then 7(Q; k1) < {44 0(1)}Q/p(k)logx for all but at most
O(J:/logB Q) integers k, © < k < 2z.

Corollary 3.2. Let ¢ be a nonzero integer and A > C + 32. For all but at most
O(szj/logc Q) integers k, v < k < 2z, we have w(Q;k,1) < {4+ o(1)}Q/¢(k)log x
for all Q) in the range :L'logAa: <Q <z

Proof. Let Q; = wlogAa:(l +1/logz)? for j = 0,1,....J, where J is the smallest
integer for which Q; > z2. Note that J < log? . We apply Lemma 3.1 for each Q;
leading to O(x/ log® () exceptional k, where C' = B—2. If Q;_1 < @ < Q; then, for
any non-exceptional k, we have n(Q; k,1) < m(Q;;k,1) < {4+0(1)}Q;/o(k)logz <
{4+ 0(1)}Q/6(k) log & since Q; < Q(1 + 1/log ).

Lemma 3.3. Let M be a finite set of distinct non-zero integers. Consider the set
of polynomials {x} U{maz+1: me M, m>0tU{-mz—1: me M, m <0}.
This set of polynomials is admissible (that is, each w(p) < p) if and only if for
every prime p there exists a nonzero residue class mod p, which does not contain
any element of the set M.

Proof. Note that, for this set of polynomials, w(p) < p if and only if there is some
integer r such that r [],,cp;(mr 4+ 1) # 0 (mod p). In other words r # 0 (mod p)
and r Z —1/m (mod p) for any m € M. Taking s = —1/r (mod p) we have s #Z 0
(mod p) and # m (mod p) for any m € M.

By the fundamental lemma of the sieve ([4], Theorem 2.6) one knows that

—k
1
(4) #{x <n <2z: Each a;p + b; prime} < H (1 — @> (1 — —) ;r:k
) p p log" x
uniformly.
Lemma 3.4. Suppose that by, ..., by are given integers, where only by can possibly

be zero. For any 1/2 < Ay < Ay <+ < Ap we have

Z Z Z H(l_%)<1—l>_kxA1A2...Ak,

A <a1<2A;, Ax<ar<2A;  Ap<an<2A; p P
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where the sums are restricted to avoid any cases where a;b; = a;b; for some 1 <

Proof. We proceed by induction on k. Fix each a;,b; for 1 < < k—1, and let w’(p)
denote the number of solutions n (mod p) to (a;n+bdy)(azn+bs) ... (ag—1n+br_1) =
0 (mod p). Then

me-2(-3) e (-0 I ()

p p p: a€ER,

where R, is the set of integers a; (mod p) such that w(p) = w'(p).
Now, if w(p) = w'(p) then p must divide ay H1<]‘<k—1(akbj — ajby), which is

< Ako(l), and so the number of such p > elog Ay is < log Ax/loglog A. Since

each of these contribute no more than 1+ 1/p = 1+ O(1/log A) to the last Euler
product, they contribute, altogether 1 + O(1/loglog Ax) which is irrelevant. Thus
we can restrict the last Euler product to primes p < elog Ay so that its value only
depends upon of a; (mod m) where m is the product of the primes < e¢log Ay, (and
so m < A7°). Allowing ay to run through m consecutive integers, this last Euler
product is thus, on average,

161 1D VRS S (P B 1 (R S

plm P \o<a<p—1 0<a<p— p plm P
aZR, a€ER,

since |R,| < k. Splitting the interval for a; into subintervals of length m, the result
follows.

4. UNIT FRACTIONS
To prove Proposition 2 we need the following result:

Proposition 3. There exist integers ap, with 1 < a, < p—1, for every prime p such
that (a,/p) = —1 for all odd p; and if My s the set of all positive integers for which
n # ap (mod p) for every p, then Y cn, 1/n diverges. In fact En<l,7 nen, 1/m >
log log x.

Note that in the introduction we saw that >, _ 5 1/n < loglogz, so that
Proposition 3 is “best possible” up to the values of the implicit constant.

To prove Proposition 3 we will use an old result of Ron Graham [2]:

Lemma 4.1 (Graham [2]). A rational number r can be written as the sum of the
reciprocals of a finite number of distinct squares if and only if 0 <r < 72/6 —1 or
1<r<n?/6.

In section 7 we will revisit this lovely result and make it a little more explicit.
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Deduction of Proposition 2. Let My = My \ {(2b)* : b € Z}; since the sum of
the squares converges, thus ) -,/ 1/n diverges. Therefore, given r > 0 we can
select a finite subset My of My such that s = > -, 1/n € (r—1/10,r). But then
0 <4(r—s) <2/5<w?/6—1, and so by Lemma 4.1 there exists a finite set of
squares M3 such that 4(r —s) = >° 1/ 1/n. Let My = {4n : n € M3z}. Since
every element in M, is an even square, thus M, and M, are disjoint subsets of M.
Therefore M = My U My C Mo with Y 4, 1/n=s+4(r —s)/4 = r, so is the set
required in the result.

We have shown in the above paragraph that for every rational r > 0 there is
such a set M, with r = ¥(M,). For rational —r < 0 we simply take M, = —M_,.
Finally let My = 0.

To prove Proposition 3, we will require yet another consequence of the funda-
mental lemma of sieve theory ([4], Theorem 2.5):

Lemma 4.2. If u is sufficiently large then, for any selection of a, (mod p) for
p < &' (with x sufficiently large) there are >, x/logz integers n € (z,2z] such

that n # a, (mod p) for all primes p < z'/*.

By splitting the interval [y*, y**/2] into dyadic intervals we deduce

Corollary 4.3. Select u sufficiently large. If y is sufficiently large then, for any
selection of a, (mod p) for p <y, we have

1
> = >, 1
n
y" <n<y®" /2
nZa, (mod p) for all p<y
Proof of Proposition 3. Select u and y sufficiently large as in corollary 4.3, and y
so that for every prime p > y there are > p/5 integers a € (p/2,p) with (a/p) = —1
(there are in fact ~ p/4 such integers). We shall suppose that a; = 1, a3 = 2 and
ap (mod p) are all chosen with (a,/p) = —1 for each p < y. Let yo = y,p1 = y**
and yr = y(2“)k for all £ > 0.
We will select the values of a, for each successive prime p > y: For each k =
0,1,2,... we pick the a, for each p from y; to yr41 so that (ap/p) = —1 with

ap, € (p/2,p) and 1
2. .

yi <n<yi* /2
nZag (mod ¢) for all ¢<p
n=a, (mod p)

minimal. Since there are at least p/5 feasible values of a, we know that one of these
>
-

yi <n<yp* /2
nZag (mod ¢) for all ¢<p

sums 1s

5)
<=
p
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Iterating this gives that

1 ) 1
3 > I (1-2 ) =l
“ n p n
Y <n<yri1/2 yr <p<yp" yi <n<yp" /2
nZag (mod ¢) for all ¢<yp41 nZag (mod g) for all ¢<yg

by Mertens’ Theorem and Corollary 4.3. Since we choose all a, > p/2 we see that
for the n counted in the first sum here, n # a, (mod p) for all p > yi4; since then
n < yrt1/2 < p/2 < ap < p. Therefore every n counted in this sum is in My. So,
summing up over such sums we deduce that, if yx41 < * < yg42 then

K
Z % > Z Z % >, K > loglog .

n<z k=1yy<n<ypy1/2
nEMO TLEMQ

This gives our result, and is in fact best possible, up to the value of the implicit
constant, by the remarks at the end of the introduction.

5. FURTHER CALCULATIONS: SMALL PRIMES

Proposition 1. Assume Conjecture EH. Fix integer n > 2 and select n > 0 arbi-
trarily small. All but O(m/log"+1/2 x) of the primes x < p < 2z have the following
properties:

(i) There are no more than n — 1 primes which are = +1 (mod p) and < p/n.

(1) fp= Zqé?/n, g=1 (mod p) 1/~ Eqﬁp/n, g=—1 (mod p) 1/4+0(n/p)
Proof. We could take any value of a € (0,1/n) in the proof below, though we take
a =1/2n to get the result above. Let L = (logz)®.

(i) The number of primes z < p < 2z for which there are > n distinct primes
g < pL with each ¢ = +1 (mod p) is less than or equal to the sum, over all possible
integers 1 < a1 < az-+- < ap, < L and by,by,...,b, € {—1,1} with the forms
a;x + b; all distinct, of

#{z <p <2z : pand each a;p+ b; prime, for 1 <i < n}.

By (4) and Lemma 3.4 this is <, L™ [log" Tz <« :l?/log"+1/2 .

(ii) By (i) all but O(;B/log"+1/2 z) of the primes z < p < 2z have no more than
n — 1 primes g < pL which are = +1 (mod p), and also satisfy (3) (taking 6 = n
and A = n + 1 there). Therefore (ii) follows if we can show that

> e n/p

z/n<g<z T, ¢==+1 (mod p)



10 CROOT AND GRANVILLE

for all but O(z/log"t! ) primes z < p < 2z. First note that, for these primes p,

1
> — < nf(x/n) < njz < L.
z/n<q<pL, ¢==*1 (mod p) q p

Taking C = n+ 1 and A = n + 35 in Corollary 3.2 we find, by partial summation,

that .
Yoo« !

zlog? z<g<attm 4 p
g=46 (mod p)
for all but O(z/log"t' z) primes p, = < p < 2z.
To cover the remaining range, let U = z'/% and § = 1 and let P be the set of
primes p, < p < 2z for which

>

2.

Lp<q<Up
g=4é (mod p)

n
p

Q|

Take m to be an integer > n/a, so that

m

1 1
] Z Z H’wﬂ-l

L<ky,ko,....kn, <U r<p<l2zx

2| X

r<p<2zx Lp<q<Up

g=4é (mod p) each k;p+4d prime
1 & x
< $—mz Z Sel,...eT(L,U)m
r=1 ej,...,e,>1 g
e1+-te,=m

by (3), where
1 r —w(p)
Serroe,(LU) = AT b=
poen (L, U) > hk”kﬂ11< * p )
L<ky<ko<-<k.<U p

and w(p) is the number of distinct solutions 5 (mod p) to j(k1j+96)...(kyj+6) =0
(mod p). Lemma 3.4 and partial summation reveal that

Serie (L U) < (logU)#lEe=1} ypm=r « (Llog U)" /L™ = log" z/L™.
We deduce that

m

n\ ™ 1 x 1\
(s ! < (2)
7] x - Z Z q < log x <L;z:>

r<p<l2x Lp<g<Up
g=4é (mod p)

1+ma

so that |P| < z/log < z/log" !z
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6. PROOFS OF THE THEOREMS

When we apply Proposition 1 and study those primes satisfying (i) and (ii),
we note that we can write all the primes ¢ = +1 (mod p) and < p/n either as
mp+ 1 with 0 < m < 2/n, or —mp — 1 with —2/n < m < 0. Letting M be the
set of such integers m, we see that M has no more than n — 1 elements and that

pfp =3(M) + O(n).

Lemma 6.1. The numbers in S(M,n) := {S(M) : M C Z*, |M| < n} are all
rational. The limit points of the set are just S(M,n —1). Thus
(1) If r ¢ Q then, for every n there exists a constant v = v(r,n) > 0 such that there
are no elements s € (M, n) with |r — s| < v.
(i1) If r € Q then there exists a constant v(r) > 0 such that if s € S(M,n(r) + 1)
with |r — s| < v then r = s.

Proof. Once we know that the limit points of £(M, n) are just 3(M,n — 1) then (i)
follows since r ¢ £(M) = Q, and (ii) follows since r ¢ S(M, n(r)).

To prove this, first note that if M is a set of integers with < n — 1 elements then
limg—oo B(M U{a}) = ¥(M). On the other hand suppose that r is a limit point of
Y(M, n) and select n minimally so that this is so. Then r = lim;_ o, £(M;) where
the M; are distinct sets of < n elements. Since the M; are distinct thus if m; is
the m € M,; with largest absolute value, then |m;| — oo as i — oo. Therefore if
N; = M; \ {m;} then lim; ,oc (N;) = lim; 00 B(M;) — lim; o0 1/m; = r. Since
each N; has < n — 1 elements there can only be finitely many distinct N;, by the
definition of n, and so r = X(N;) € (M, n — 1) for some .

Proof of Theorem 1 when r ¢ Q. We apply Proposition 1 and Lemma 6.1(ii)
with n > A and n > 0 sufficiently small (with n < v(r,n)). Thus (i) and (ii) of
Proposition 1 hold for all but O(m/logA z) of the primes < p < 2z. For these p,
if hi(p) ~ G(p)e’/? then r ~ pf, = S(M) 4+ O(n), which is impossible by Lemma
6.1(1).

Proof of Theorem 1 when r € Q. If r = 0 then apply Proposition 1 with n = 2,
and 7 small. We see that the number of primes z < p < 2z for which |f,| > n/p is

< %/2 + Z #{r < p<2z: p,mp=+1 both prime}
log™ x4 oy

< > 11 (1 1>_1 < —
log® p nlog? x

1<m<2/n p|m

by Lemma 3.4. The result follows.
By Proposition 2 we know that if r € Q then r € X(M). For r # 0 take
n = n(r) + 1 in Proposition 1, with n far smaller than |r|, and far smaller than
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v(r) in Lemma 6.1(ii). Proposition 1 and Lemma 6.1(ii) imply that for all but
O(m/log”(r)"i'?’/2 z) of the primes x < p < 2z, we have that f, ~ {r + O(n)}/p if
and only if the set of primes = +1 (mod p) which are < p/n, must be of the form
{Imp+1|: m € M} where n(M) = n(r) and (M) = r. The result now follows

immediately from Conjecture HL2.

Proof of Theorem 2. We wish to determine how often f, > 2log A 4 o(1) (and,
analogously, how often f, < —2log A + o(1)). We select n = (34 in Proposition 1
with n sufficiently small. Evidently if f, > 2log A+ O(n) for some prime p in (z, 2z]
satisfying (i) and (ii) then the set of primes = +1 (mod p) which are < p/n, must
be of the form {|mp+ 1| : m € M} where n(M) = 54 — 1 and (M) > 2log A.
The result now follows immediately from Conjecture HL2.

~

7. UNIT FRACTIONS, REVISITED: BOUNDS ON n(r)

Lemma 4.1 is a consequence of a rather more general result on unit fractions
by Graham [2]. However the proof does not easily reveal how many reciprocals of
distinct squares one needs to represent a given rational in the appropriate range.
However we need to estimate this in order to bound n(r). In this section we will
give a proof of a version of Lemma 4.1, inspired by the proof in [2], which will allow
us to bound these quantities:

Our first observation is about integers which can be written as the sum of distinct
squares.

Lemma 7.1. If N > 9 then for any integer r in the range 129 < r < EnNzl n?—129
there exists a set M of distinct integers from [1, N| such that r =% ./ m?.

Proof. We proceed by induction. One can verify this by direct computation for N =
9 and 10. Otherwise, if it is true for N — 1, then for any r € [129, 251\7:—11 n? — 129]

we can use the same set M as before; whereas for any r € [N?+129, EnNzl n?—129]
we can let M = M'U{N} where M' was the set used at the N — 1st stage for
representing r — N2. These two intervals combine to give what was desired provided
that ZnNz_ll n? —129 +1 > N? 4+ 129, which is true for N > 11.

By the same inductive proof we have the following more general result:
Corollary 7.2. Suppose that 1 < uy < ug < --- < uy are a sequence of positive
integers with uj = 7 for all 7 <10 < N, with the property that ui+1—|—257 < Zle u?
for each k > 10. Then for any integer r in the range 129 < r < EnNzl u? — 129
there exists a set M of distinct integers from [1, N] such that r =Y ;s u?,.
Let Ny be the least common multiple of the integers < y.

Lemma 7.3. Fory > 96, the set of proper divisors of Ny satisfy the hypothesis of
Corollary 7.2.
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Proof. We proceed by induction on k. The set {m : m|N,} contains all of the
integers < y and these satisfy the hypothesis as we saw in the proof of Lemma 7.1.
If we can show that v < w41 < V2v for some v dividing N, then v = u, for some
r < k so that v < uy and thus ug4q < V/2u . which leads to

k k—1
u?:ui—l— u?Zui—l—(ui—l—QE)T)zui_H + 257,

J

and we are done. We will use the fact that if = is an integer then there is a prime in
the interval (z,zv/2) unless = 1,2,3 or 7. This is easily proved using the explicit
bounds in [10] and a little computation.

We now show how to find v as above whenever ug4q < N,/2, provided k >
y > 96. Let p; be the largest prime factor of U = ugyq, and assume for now that
pe > 11. Suppose that there exists prime p;, with 11 < p; < py such that p;fj ANU.
Pick the largest such j, and then we can take v = p;U/pj+1 above. Thus we may
assume that p;'-j divides U for 5 < 53 <0 — 1.

Similarly 2272 and 3%~! divide U else we can take v = 8U/11 or 9U/11, re-
spectively. Since y > 9 we know that 2 and 3 divide U and so 5 divides U else we
can take v = 5U/6. But then 2¢271 divides U else we can take v = 4U/5; so that
4 divides U and therefore 3 divides U else we can take v = 3U/4. But now we
know that 9 divides U and so 7°7 divides U else we can take v = 7U/9.

If p, = 7 then 5 divides U else we can take v = 5U /7. In this case, or if p, = 5,
then 2¢2~1 divides U else we can take v = 4U/5; so that 4 divides U and therefore
3¢ divides U else we can take v = 3U /4.

We have thus proved that if p; > 5 then Hle pit/U is one or two times a power
of pe. If py* does not divide U then let g = py; otherwise psy; <y since U < N, /2
and we let ¢ = py41. Now either ¢ + 1 or ¢ + 3 is divisible by 2 but not 4, and so
can be written in the form 2a where a is an odd number dividing U, so that we can
take v = qU/2a. Therefore p; < 3.

If pr = 3 then 9 divides U else 32 divides U (since k > y > 96), and so 9 divides
3¢72 divides U else we can take v = 27U/32. Therefore 2272 divides U else we
can take v = 8U /9. But then we can take v = 5U/6. If py = 2 then 2? divides U
by the induction hypothesis, so we can take v = 3U /4.

Finally if ugy; = N, /2 then 2223(]\7&,/]’)2 > (N,/2)* and Z?:l i* > 257, as

required.

Theorem 7.4. For any rational number p/q € (0,1/2] let y equal the largest prime
power divisor of 129q. There exists a set M of divisors of N, such that p/q =

Yomen 1/m?.
Proof of Theorem 7.4. Let r = pr,/q, so that 129 < r < EmlNy m<N, m? — 129.
Therefore, by Lemma 7.3 and Corollary 7.2, there exists a set D of divisors of Ny,
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with each d € D satisfying d < N, such that r = Y, d*. Dividing through by
N and writing M = {N,/d: d € D} gives our result.

Combining Theorem 7.4 with Proposition 3 we can now get an effective version
of Proposition 2:

Proposition 2(ii). Let r = p/q. There exists a constant ¢ > 0 such that if y is

the larger of e« and the largest prime power divisor of 129q then we can select
M so that the integers in M all divide the square of the least common multiple of
the integers < y. In particular | M| < W),

Remark. A calculation reveals that all multiples of 13, up to 129, can be written
as the sum of distinct squares of integers. This allows us to replace 129 by 13 in
the two results immediately above, and this is the smallest such number.
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8. A SURPRISING EQUIVALENCE: CLASS NUMBERS AND PRIME PAIRS

Proof of Theorem $A. Take n = 2 in Proposition 1, so that assuming Conjecture
EH, with n > 0 arbitrarily small, we have the following: For all but o(z/log” )
primes * < p < 2z, there is no more than one prime of the form mp + 1 with
m < 1/n. If there is such a prime then pf, = §/m + O(n); otherwise pf, = O(n).
Therefore, letting n — 0 as © — oo, we see that, for such primes p, we have that
mp =+ 1 is also prime if and only if hy(p) ~ G(p)e?/?>™. The result follows.

Proof of Theorem 3B. If we do not assume Conjecture EH then a version of Propo-
sition 2 still holds, by the same proof. The only change that needs to be made is in
the statement for f, in (ii), where we need to add the contribution for those primes
q = +1 (mod p) in the range p'T® < ¢ < p?T°. As noted at the end of section 2,
this extra contribution is bounded by O(1/p): more explicitly we can bound this
contribution by {44 o(1)}/p, for all but O(x/ log® z) primes p < z, using Corollary
3.2.

Thus if hy(p) > ¢G(p) for > x/ log” # primes p < z then, by Proposition 1 with
n sufficiently small,

1 1 4+ o(1

I S SO (E2'C NPT
q<p/n a<p/m 7 b b

g=1 (mod p) g=—1 (mod p)

_ {21og(e/e) + 0} 1
p p

Thus the result follows for some m < 1/n.

Proof of Theorem 4. Take n = k+1 in the unconditional Proposition 1 (as described
in the proof of Theorem 3B above), and then the result follows for those primes p
with mp + 1 also prime for every m € M which satisfy both (i) and (ii).
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