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Abstract

In this paper we prove a basic theorem which says that if the tail of the spectral L2 norm of a function
f : Fpn → [0, 1] is sufficiently small (i.e. the function f is “sufficiently smooth”), then there are lots of
arithmetic progressions m, m + d, m + 2d where

f(m)f(m + d)f(m + 2d) > 0.

If f were an indicator function for some set S, then this would be saying that S has many three-term
arithmetic progressions.

In principle this theorem can be applied to sets having very low density, where |S| is around pn(1−γ)

for some small γ > 0.
Furthermore, we show that if g : Fpn → [0, 1] is majorized by f , and E(g) is not too “small”, then in

fact there are lots of progressions m, m + d, m + 2d where f(m)g(m + d)f(m + 2d) > 0.

1 Introduction

Suppose that p is a prime number, and n ≥ 1 is an integer. Let F denote the finite field Fpn and set
F = |F|. Suppose that

f : F → [0, 1].

We will use the expectation operator, defined to be

E(f) := F−1Σmf(m).

For an a ∈ F we will denote the Fourier transform of f at a as follows

f̂(a) = Σmf(m)ωa·m,

where ω = e2πi/p, and where a · m denotes the dot product of a and m with respect to the standard Fp

basis for F.

Write F = {a1, ..., aF }, where the ai are ordered so that

|f̂ (a1)| ≥ |f̂ (a2)| ≥ · · · ≥ |f̂ (aF )|.

For convenience we set fi = f̂(ai); and thus,

|f1| ≥ · · · ≥ |fF |.

We also define
σi = Σi<j≤F |fj |

2,
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which is the tail of the spectral L2 norm of f̂ .
As a consequence of Parseval we have that if E(f) = β, then

• For all i = 1, ..., F , σi ≤ βF 2.
• Given ε ∈ (0, 1], the number of indices i = 1, ..., F such that |fi| ≥ εF is at most βε−2.

There are certain functions which have a lot fewer “large” Fourier coefficients as predicted by this
second application of Parseval; for example, suppose that S is a subset of F having βF elements, and set

f(m) =
1

|S|
(S ∗ S)(m).

Then, f(m) is supported on the elements of S + S, and clearly takes on values in [0, 1]; also, E(f) = β.
Now, if

|f̂(a)| =
|Ŝ(a)|2

|S|
≥ εF,

then
|Ŝ(a)|2 ≥ εβF 2;

and, by Parseval one can easily show that the number of a ∈ F with this property is at most ε−1, which
is better than the βε−2 claimed after the second bullet above (at least for fixed β and small enough ε).
Furthermore, the σi satisfy a sharper inequality than just σi ≤ βF 2. In fact, if i is chosen so that
|fi| ≤ εF , then we will have

σi ≤
|Ŝ(ai)|

2

|S|2
Σi≤j≤F |Ŝ(aj)|

2 ≤ εF 2.

If we were to take f to be something like

f(m) =
1

|S|2
(S ∗ S ∗ S)(m),

we would get even sharper inequalities.

The main theorem of our paper will show that functions like f above must always be rich in three-
term arithmetic progressions in a certain sense (at least if f is smooth enough – in fact, we will require f
to be even smoother than the two examples above); actually, it will show even more – it will show that
there are lots of such three-term progressions that pass through dense subsets where f is positive.

Two motivations for the results in the present paper are: First, Roth iteration, the primary Fourier-
analytic method for proving that sets have three-term arithmetic progressions, does not work when the
underlying set (or set-like function f : Fpn → [0, 1]) has very low density, because only n iterations
can be used, which in turn limits the method to densities ≥ c/n, where c = c(p) > 0. In order to
prove stronger theorems using Fourier methods, then, one needs to branch out with new approaches –
the present paper does not use Roth iteration to prove its results. Second, although there are certain
isolated results on “smooth functions” or “smooth sets”, which say, for example, that sumsets A + A
have arithmetic progressions (see, for example, [1], [3], [7], and [8]), as well as results which say that
dense subsets of random or pseudorandom sets (which are a type of smooth function, since they have
only one large Fourier coefficient; though, they are not smooth in the sense that we use in the present
paper) have arithmetic progressions (see [5] and [4]), there is no general theory that tells one when such
sets have arithmetic progressions based purely on the decay properties of their Fourier transforms.

Rather than starting with the statement of this theorem, we will begin by stating one of its corollaries
that is easy to parse. First, we introduce some more notation: Given f1, f2, f3 : F → C, define

Λ3(f1, f2, f3) = Em,d(f1(m)f2(m + d)f3(m + 2d))

= F−2Σm,df1(m)f2(m + d)f3(m + 2d).

If all three of our functions f1, f2, f3 are the same function f , then we use the abbreviated notation

Λ3(f) := Λ3(f, f, f).
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We note that the trivial progressions m, m, m provide the trivial lower bound

Λ3(f) ≥ E(f)3F−1.

We also define the usual norms (and quasinorms for t < 1)

||f ||t =
“

Σa|f(a)|t
”1/t

.

The corollary alluded to above is as follows.

Corollary 1 Suppose f, g : F → [0, 1], and that

For all m ∈ F, f(m) ≥ g(m) ≥ 0; and, E(f) ≥ E(g) ≥ F−θ.

Then, if
||f̂ ||1/3 < F 1+γ ,

we will have that
Λ3(f, g, f), Λ3(g, f, f) ≥ 10−10p−10F−12θ−4γ .

Remark 1. It is possible to prove a similar results for quasinorms higher than 1/3; however, our method
will not give good results for quasinorms 1/2 or higher.

Remark 2. An example of a function f where this theorem gives non-trivial results is as follows: First,
let S be a subset of F having F 99/100 elements. Then, define

f(m) = |S|−6(S ∗ S ∗ S ∗ S ∗ S ∗ S ∗ S)(m)

Note that f : F → [0, 1], E(f) = E(S), and f is supported on the sumset S +S +S +S +S +S +S. Now,

|f̂(a)| = |S|−6|Ŝ(a)|7;

and, using Parseval, we find that the number of places a where

|Ŝ(a)| ≥ 2−jF

is bounded from above by F−1/10022j . Thus,

||f̂ ||1/3 ≤ |S|−6
“

Σ
∞

j=02
−7j/3F 7/3(F−1/10022j)

”3

� F 1+3/100.

Applying Corollary 1, it is easy to see that there are lots of m and d 6= 0 such that

f(m)f(m + d)f(m + 2d) > 0.

Of course, it is fairly easy to prove non-trivial lower bounds for Λ3(f) without using this corollary
(see [2]); however, the ideas in the corollary that give these lower bounds are different from these other
methods (in the Fourier setting the ideas in [2] amount to forcing the Fourier transform f̂(a) to be a
non-negative real number at all places a; this is quite different from the ideas that lead to the proof of
the above corollary).

Remark 3. One way in which this corollary is different from others in the theory of arithmetic pro-
gressions (e.g. [6]), is that it produces lower bounds for Λ3(f) for when E(f) is quite small. However,
note that the condition that ||f̂ ||1/3 is “small” is a very strong requirement, only satisfied by certain
special “smooth” functions, whereas Meshulam’s result [6] holds for arbitrary general functions f where
E(f) ≥ cp/n.

The main theorem from which the above corollary follows is:
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Theorem 1 Suppose that f, g : F → [0, 1] satisfy

f(m) ≥ g(m) ≥ 0, and E(f) ≥ E(g) ≥ max(F−θ, 8p−1/2k−1),

and
σk ≤ δ2F 2,

for some k ≥ 1. Then,

Λ3(f, g, f), Λ3(g, f, f) ≥ p−2

 

k

2

!−1

F−4θ/128 − 9δF−2θ/8.

Remark 4. One way that one can see how this theorem is much stronger than the above corollary is as
follows: Say we start with f such that ||f̂ ||1/3 is small enough so that the corollary implies there are lots
of m, d such that f(m)g(m + d)f(m + 2d) > 0. Now suppose we change the value of f(m) at just one
place m; then, ||f̂ ||1/3 may no longer be all that small, and the corollary will give only a trivial lower
bound for Λ3(f, g, f); however, in a lot of cases, the change to just one (or in fact many) value of f(m)
has little affect on the value of σk, and so has little affect on the conclusion given by the above theorem.

It would be good if we could have m, m + d, m + 2d all three belong to certain special dense subsets
of F (subsets A of F such that E(f(m)A(m)) > c > 0); however, this appears to be a very difficult and
delicate problem to solve, and would require new ideas in addition to the ones in this paper.

We close the introduction of this paper with the following conjecture, which is motivated by the above
theorem. We keep the conjecture intentionally vague:

Conjecture. Suppose f : F → [0, 1], and E(f) ≥ F−θ. Let k = k(ε) denote the number of places a ∈ F

where |f̂(a)| > εF . Then, one can obtain a non-trivial bound for Λ3(f) purely in terms of ε, k, and
θ. Basically, what we are asking is a bound of the type appearing in the above theorem, except that it
should not depend on the tail of the spectral L2 norm of f̂ – it should only depend on basic information
about the large Fourier coefficients; and, it should give good results when there are only very few large
Fourier coefficients.

2 Proof of Theorem 1 and its corollary

2.1 Proof of Corollary 1

We first note that from the bound
||f̂ ||1/3 < F 1+γ ,

we deduce

|fj | <
F 1+γ

j3
.

From this it follows that

σk < F 2+2γΣj≥k+1j
−6 < F 2+2γ

Z ∞

k

x−6dx =
F 2+2γ

5k5
.

Thus,
σk < δ2F 2, for δ = (2k5/2)−1F γ .

From Theorem 1 we deduce that

Λ3(f, g, f) > p−2

 

k

2

!−1

F−4θ/128 − 9k−5/2F−2θ+γ/16.

≥ p−2k−2F−4θ/64 − 9k−5/2F−2θ+γ/16.

The value of k which maximizes this last quantity is

k = 2025p4F 4θ+2γ ,

and it produces the lower bound

Λ3(f, g, f) ≥ 10−10p−10F−12θ−4γ .

�
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2.2 Notations and preliminary lemmas

Let
A = {a1, ..., ak}.

denote the set of places corresponding to f1, ..., fk; that is,

fi = f̂(ai).

Note that because we can have |fi| = |fj |, the set A is not well defined; nonetheless, for the purposes of
our proof all we need is that f1, ..., fk correspond to any set of k largest Fourier coefficients of f . Also,
let

B := A − A = {a − b : a, b ∈ A}.

We seek a subspace W of F such that

• At least a quarter of the translates t ∈ F (actually, we only need consider t ∈ W ⊥) satisfy

Σm∈t+W g(m) ≥ E(g)|W |/2. (1)

• If V denotes the orthogonal complement of W , then there are no non-zero elements of B that lie in
V ; that is,

B ∩ V = {0}. (2)

What this would imply is that all the cosets a + V , a ∈ A, are distinct.
• We want W to have small dimension.

We will show that there is a subspace W satisfying the first two bullets above, where |W | = pn′

(so,
n′ is the dimension of W ), where

1 + (log p)−1 log

 

k

2

!

≤ n′ < 2 + (log p)−1 log

 

k

2

!

.

To this end, we let S denote the set of all subspaces of F having this dimension n′.

We begin with a lemma.

Lemma 1 If we pick a subpace W ∈ S at random (using uniform measures), we will have that if
V = W⊥, then

B ∩ V = {0}.

holds with probability at least 1/2.

Proof of the Lemma. Given a random subspace V of codimension n′ (chosen with the uniform
measure), the probability that some fixed element b ∈ B, b 6= 0, lies in V will be

|V | − 1

F − 1
=

pn−n′

− 1

pn − 1
.

This follows because 0 lies in every subspace, and if we eliminate it, we are left with F −1 elements in our
field; and, each non-zero element of the field is just as likely to be in a random subspace V as any other
element – since there are |V | − 1 non-zero elements of V , this gives the probability (|V | − 1)/(F − 1).

Thus, since there are at most
`

k
2

´

pairs {b,−b} ⊆ B (which is all we need to consider, since b ∈ V if
and only if −b ∈ V ), the probability that no b ∈ B, b 6= 0, lies in V is at least

1 −

 

k

2

!

pn−n′

− 1

pn − 1
> 1 −

 

k

2

!

p−n′

.

This last quantity exceeds 1/2 whenever

n′ ≥ 1 + (log p)−1 log

 

k

2

!

.

�

This Lemma 1 is what allows us to produce subspaces V satisfying (2); however, the following lemma
will be needed to get (1) to hold:
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Lemma 2 If
E(g) > 8p−1/2k−1,

then if t ∈ F and W ∈ S are chosen independently at random using uniform measures, we will have that
(1) holds with probability exceeding 3/4.

Proof of the Lemma. The proof of this corollary is via Chebychev’s inequality: Suppose we select
t ∈ F and W ∈ S independently at random using uniform measures. Define the random variable

X := Σm∈t+W g(m).

To prove our corollary it suffices to show that

Prob(|X − |W |E(g)| > |W |E(g)/2) < 1/4.

To prove this using Chebychev, we first consider

E(X2) = |S|−1F−1Σt∈FΣW∈S

“

Σm∈t+W g(m)
”2

.

On expanding out this square, we are left to estimate

Σm1,m2∈Fg(m1)g(m2)Σ (t,W )∈F×S
m1,m2∈t+W

1.

It is easy to see that this equals

Σm1,m2∈Fg(m1)g(m2)Σ W∈S
m1−m2∈W

Σ t∈F

m1−t∈W

1.

(Note that in this final inner sum we get that if m1 − t ∈ W , then m2 − t ∈ W as well, because
m1 −m2 ∈ W .) Clearly, given W and m1, there are |W | choices for t ∈ F such that m1 − t ∈ W ; and so,
the sum is

Σm1,m2∈Fg(m1)g(m2)Σ W∈S
m1−m2∈W

|W |.

To bound this from above, we consider the case where m1 = m2 seperate from the case m1 6= m2:
The contribution of all m1, m2 where m1 = m2 is

Σm∈Fg(m)2|S||W | ≤ F |S||W | = |S|pn+n′

.

The contribution of all unequal pairs m1, m2 is at most

Σm1,m2∈Fg(m1)g(m2)|S||W |
|W | − 1

F − 1
≤ |S|p2n′−nΣm1,m2∈F g(m1)g(m2)

= |S|p2n′+n
E(g)2.

So, we deduce that

E(X2) ≤ |S|−1F−1
“

|S|p2n′+n
E(g)2 + |S|pn′+n

”

= p2n′

E(g)2 + pn′

.

We also have that

E(X) = |S|−1F−1ΣW∈SΣt∈FΣm∈t+W g(m)

= |S|−1F−1Σm∈Fg(m)ΣW∈SΣ t∈F

m∈t+W

1

= |S|−1F−1Σm∈Fg(m)ΣW∈S|W |

= pn′

E(g).

So, we deduce that

Var(X) = E(X2) − E(X)2 ≤ pn′

.

Chebychev’s inequality then gives that

P(|X − E(X)| > E(X)/2) ≤
4Var(X)

p2n′
E(g)2

≤
4

pn′
E(g)2

<
1

4
,
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provided

E(g)2 > 64p−1k−2 > 16p−1

 

k

2

!−1

≥ 16p−n′

.

�

A corollary of both Lemmas 1 and 2 is as follows:

Corollary 2 Suppose that
E(g) > 8p−1/2k−1.

Then, there exists a subspace W ∈ S such that
• Equation (2) holds for V = W⊥; and,
• At least F/4 of the translates t ∈ F satisfy (1).

Proof of the Corollary. Suppose we select (t, W ) ∈ F × S at random using the uniform measure. Let
E1 be the event that (2) holds for V = W⊥, and let E2 be the event that (1) holds. Then,

P(E2 | E1) =
P(E1, E2)

P(E1)
≥ P(E1) + P(E2) − 1.

By Lemma 1 we have P(E1) ≥ 1/2, and by Lemma 2 we have P(E2) > 3/4; and so,

P(E2 | E1) > 1/4.

It follows that some W ∈ S has the property that (2) holds and that (1) holds for at least F/4 translates
t ∈ F. �

2.3 Construction of the subspace V and the coset t + W

Let W be one of the subspaces described by Corollary 2. Then, suppose t ∈ F, and define α := αt : F →
{0, 1} to be the indicator function for the coset t + W ; that is,

α(m) =



1, if m ∈ t + W ;
0, if m 6∈ t + W.

If we let V = W⊥, then the Fourier transform of α is given by

α̂(a) =



|W |ωa·t, if a ∈ V ;
0, if a 6∈ V.

Let
h(m) = (fα ∗ V )(m) = Σa+b=m(fα)(a)V (b) = Σb∈V (fα)(m − b),

where V (b) denotes the indicator function for V . If w 6∈ W , then ĥ(w) = 0 (because V̂ (w) = 0 in that
case); however, if w ∈ W , then the Fourier transform of h is given by

ĥ(w) = (̂fα)(w)V̂ (w)

=
1

F
(f̂ ∗ α̂)(w)V̂ (w)

=
|V |

F
Σu1+u2=w f̂(u1)α̂(u2)

=
|V | · |W |

F
Σu2∈V f̂(w − u2)ω

u2·t

= Σv∈V f̂(w + v)ω−v·t. (3)

We will now show that there is a choice for t ∈ F which guarantees that the large Fourier spectrum
of h(m) is ‘close’ to that of f(m + t): First, split W into the union of the sets W1 and W2, where W1

is the set of all w ∈ W such that the coset w + V contains some element of A (which must be unique);
W2 is the remaining elements of W . We use the notations v(x) and w(x) to denote the unique pair of
elements of V and W , respectively, such that

x = v(x) + w(x).

7



Note that if x ∈ A, then w(x) ∈ W1.

We seek t ∈ F such that the following three things all hold:

• We have that

Σa∈A|ĥ(w(a)) − ω−v(a)·tf̂ (a)|2 ≤ 4δ2F 2. (4)

• We have that

Σw∈W2
|ĥ(w)|2 ≤ 4δ2F 2. (5)

• Finally, we want that

Σm∈t+W g(m) ≥ E(g)|W |/2. (6)

One condition guaranteeing the first two bullets is

Σa∈A|ĥ(w(a)) − ω−v(a)·tf̂ (a)|2 + Σw∈W2
|ĥ(w)|2 ≤ 4δ2F 2. (7)

From our formula (3) we get that if we sum the first sum in (7) over t ∈ V , we get

Σt∈V Σa∈A|ĥ(w(a)) − ω−v(a)·tf̂(a)|2

= Σa∈AΣt∈V

˛

˛

˛

˛

Σ v∈V
v 6=v(a)

f̂(v + w(a))ω−v·t

˛

˛

˛

˛

2

= Σa∈AΣ v1,v2∈V

v1,v2 6=v(a)
Σt∈V f̂(v1 + w(a))f̂(v2 + w(a))ω−(v1−v2)·t

= |V |Σa∈AΣ v∈V
v 6=v(a)

|f̂ (v + w(a))|2. (8)

If we sum the second sum in (7) over t ∈ V , we get

Σw∈W2Σv1,v2∈V Σt∈V f̂ (v1 + w)f̂ (v2 + w)ω−(v1−v2)·t

= |V |Σw∈W2Σv∈V |f̂ (v + w)|2. (9)

The quantities in (8) and (9) sum to

|V |Σ a∈F

a6∈A

|f̂ (a)|2 = |V |σk. (10)

Since the left-hand-side of (7) is invariant under translating t by any element of W , we deduce that if we
extend the sum of the left-hand-side of (7) from all t ∈ V to all t ∈ F, this sum is bounded from above
by Fσk (instead of |V |σk as in (10) ).

Now, if we let T denote the set of t ∈ F for which (1) holds, then we note that |T | ≥ F/4; and, the
sum over all t ∈ T ⊆ F of the left-hand-side of (7) is bounded from above by the sum over all t ∈ F ,
which is Fσk. It follows by simple averaging that there exists t ∈ T such that

Σa∈A|ĥ(w(a)) − ω−v(a)·tf̂ (a)|2 + Σw∈W2
|ĥ(w)|2 ≤

Fσk

T
≤ 4σk;

and so, for this t ∈ T we will have that both (4) and (5) hold; and, trivially, (6) holds by virtue of the
fact that t ∈ T .

2.4 An m ∈ t + W , g(m) ≥ 0 is a midpoint of many arithmetic progres-

sions

Now select m ∈ t + W such that
g(m) ≥ E(g)/2.

(By (1) it is obvious such m exists.) We will show that

Σdf(m − d)g(m)f(m + d) is large.

8



To do this we just need to show that

Σdf(m − d)f(m + d) is large.

Expressing this in terms of Fourier transforms, we find that it equals

F−1Σaf̂ (a)2ω−2a·m = F−1Σa∈Af̂(a)2ω−2a·m + E, (11)

where the error E satisfies

|E| ≤ F−1Σ
F

j=k+1f
2
j = F−1σk ≤ δ2F.

We now compare the final sum in (11) with the following:

F−1Σa∈Aĥ(w(a))2ω2v(a)·t−2a·m. (12)

From the Cauchy-Schwarz inequality, we find that these two sums (12) and the final sum in (11) differ
by at most

F−1
“

Σa∈A|ĥ(w(a)) − f̂(a)ω−v(a)·t|2
”1/2 “

Σa∈A|ĥ(w(a)) + f̂ (a)ω−v(a)·t|2
”1/2

.

Using (4) and Parseval we find that this is at most

F−1(2δF )(2F ) = 4δF.

Next, observe that since m ∈ t + W , we have that

a · m = v(a) · m + w(a) · m = v(a) · t + w(a) · m;

and so, the sum in (12) equals

F−1Σa∈Aĥ(w(a))2ω−2w(a)·m.

We wish to extend this to a sum over all the elements of F, and to do this we use the error estimate
(5) to deduce that this sum equals

F−1Σbĥ(b)2ω−2b·m + E′, (13)

where
|E′| ≤ F−1Σw∈W2

|ĥ(w)|2 ≤ 4δ2F.

Now, we can interpret the sum in (13) purely in terms of combinatorial properties of h: The sum
equals

Σdh(m − d)h(m + d).

Using the fact that h is translation-invariant by elements of V , we find that the sum is at least

Σd∈V h(m − d)h(m + d) = h(m)2Σd∈V 1 ≥ h(m)2|V |

= f(m)2|V |.

This last equality holds since h and f are equal on the coset t + W .

Putting together all our estimates, we find that

Σdf(m − d)f(m + d) ≥ f(m)2|V | − 4δ2F − 4δF − δ2F

≥ g(m)2|V | − 9δF

≥ E(g)2|V |/4 − 9δF.
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2.5 From one midpoint to many

We can repeat the argument in the previous subsection many times for different values of m. The idea
is to reassign g(m) to 0, to produce the new function

g2(x) :=



g(x), if x 6= m;
0, if x = m.

Then, we find a different m2 where g2(m2) ≥ E(g2)/2, and where

Σdf(m2 − d)f(m2 + d) ≥ E(g2)
2|V |/4 − 9δF.

Thus, we will produce a sequence of functions g1 := g, g2, g3, ..., gr, and a sequence of numbers
m2, m3, ..., mr where r ≥ E(g)F/2, each E(gi) ≥ E(g)/2, and gi(mi) ≥ E(gi)/2 ≥ E(g)/4. We can
conclude from this that

Λ3(f, g, f) ≥ F−2Σ
r

i=1(E(gi)
2pn−n′

/4 − 9δF )(E(g)/4)

≥ F−2(E(g)F/2)(E(g)/4)(E(g)2pn−n′

/16 − 9δF )

= E(g)4(128pn′

)−1 − 9δE(g)2/8

≥ p−2

 

k

2

!−1

F−4θ/128 − 9δF−2θ/8.

The proof for Λ3(g, f, f) is nearly identical; the only difference is that in this case we need to bound

F−1Σaf̂(a)f̂(−2a)ωa·m, (14)

instead of
F−1Σaf̂ (a)2ω−2a·m. (15)

The methods we apply above work equally well for (14) as they do for (15). �
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