ON SOME QUESTIONS OF ERDOS AND GRAHAM
ABOUT EGYPTIAN FRACTIONS

ERNEsST S. CrooT III

Abstract. In this paper we prove that for z sufficiently large, every integer
m with

2
t<m< | Y l_g(loglogfﬂ) (1+0(1))
B B 1<n<z 2 Ing

can be written as m =", ., €n/n, where ¢ =0 or 1.

§1. Introduction. Define N (z) to be the set of all positive integers m which
can be expressed as

1 1 1
m=—+—++ -+ —,
ny 1p) ng
where k is variable and the n;’s are integers with 1 <n; <ns <---<ng <z.

In [1] Erdés and Graham asked the following questions.

1. What is the smallest number not in N (z)?

2. How many numbers are in N (z)?

Recently, in [6], Yokota showed that {n : 1 < n < logz — 5loglogz} C
N(z), thus giving the correct asymptotic to the first two of these questions.
In this paper we prove the following results.

MAIN THEOREM. Define n(z) to be the largest integer such that, whenever
1 < n < n(z), n €7, there exist integers 1 < ny < ny < -+ < ng < z, for
some k, such that

1 1 1
n=—+—+- -+ —.
n 1y) ng

Then

1 9 (loglogz)?(1+ o(1))
2 w3

log x
1<n<z 8

)2
< n(r) < E l _ ;(loglog ‘E) (1 + 0(1))
- B L 2 log

1 T

COROLLARY. Let vy = limg_; oo {El<n<x 1/n — log m} be Euler’s constant.

For a given positive integer n there are integers

1 2
1§n1<n2<u.<nk§y%7{y+<g+dm>B&ﬁ}’

n

for some k, such that
1 1 1
n= —+4 —+4 .4+ —.
n 1p) ng



To answer these questions of Erdés and Graham above, let >~ 1/n =
m + J, where m = m(z) is the integer part of ., . 1/n, and § = §(z) is
the fractional part. o

We have trivially that N(z) C {1,2,...,m} and our main theorem tells us
that when z is sufficiently large, {1,2,....,m — 1} C N(z). Moreover, if § >
((%+0(1))(10g10g1‘)2/10g33 then m € N(z) so that N(z) = {1,2,...,m}, and if
§ < (3+o(1))(loglog z)?/log z then m ¢ N(z) so that N(z) = {1,2,...,m—1}.
Let D(z) = (3 +o(1))(loglog z)?/logz. We believe that the upper bound in
the Main Theorem is the truth, which if true would say that for z sufficiently
large,

(L2, m}, if 0 > D(x)
N(z) = { {1,2,...,m—1}, ifd < D(z).

To prove the Main Theorem we will need to introduce some notation. For
any given prime power p® and any integer z > 1, define S(p®, z) to be the set
of integers n < x such that if ¢°|n then ¢® < p?. Define

)1 1
f(p®,z) == max mln{—+~~~+— . —+ —+ -+ — =1 (mod p),

1<i<p—-1 xq Tk 1 o Tk

1<z <--- < <z each a?iES(pa,m)}

(let f = oo if such a ‘maximum’ does not exist). For ¢ > 0 let

a a 1
F(z,c) = Z %—1—2{””9& s z/logfz < pt <z, mp® < m}
pe<z/logz

The idea of the proof of the Main Theorem is as follows: we start with the
full sum 7, ., ., 1/n and then try to remove as few terms as we can so that
the sum of the remaining terms is an integer. We want the contribution of
those terms we remove to be as small as possible and Proposition 1 below tells
us that this contribution need be no bigger than F(z,c), for any ¢ > 0.



PropPoOSITION 1. For any given integer x there exists a subset T of the
integers < x such that So = S,(z) = ), p 1/t is an integer satisfying

0<Z%—So(m)§F(:v,c),

n<z

forall ¢ > 0.

To see why Proposition 1 is true, we first remove all of those terms in the full
sum where n has a prime power factor bigger than z/log® z, which accounts
for the second summand in the definition of F(z, ¢) above. Call the sum of the
remaining terms S = u/v, where ged(u,v) = 1. We observe that if p*|v then
p? < x/log’ . Let ¢° < x/log®x be the largest prime power dividing v. We
try to find numbers 1 < z1 < x9 < --- < 2 < x/q”, where:

1. gte; fori=1,2,... k.

2. All of the prime power factors of the z; are < ¢°; and
3. ¢S—-L -1 ... L =0 (mod q).

(Notice that ¢®S = ¢’u/v makes sense modulo ¢ because ¢°||v.) From the
definition of the function f we have that if f(q° z/¢%) # oo then there are
such integers z;; moreover, there is a choice with

1 1 1

— 4+ — 4+ — < flg",2/q").

X1 9 Tk
Let us just assume for the moment that f(¢° z/¢%) # co and let 1 < z; <
ry < --- < x < x/q” be any choice satisfying

1 1
— 4t — < f" /).
1 Tk
We make the following three deductions.

1. Each of the numbers

1 1 1

, sy
qul qbl‘2 qbl‘k

are terms in the sum S.
2. If we remove these terms from S and call the new sum S’ so that

u’ 1 1
=8 =8 b
v q° T Tk

, ged(u',v') =1,

then the largest prime power dividing v’ is strictly smaller than ¢°.
3. This new sum S’ satisfies S — 5’ < f(¢°,2/4%)/¢".

Now let 7¢ be the largest prime power dividing v'. We subtract terms from
S’, just like when we subtracted from the sum S, to produce yet another sum
S" = u"/v", ged(u',v") = 1, where the largest prime power dividing v is
strictly smaller than r® < ¢°. This new sum S’/ satisfies

i'2/d) | S0 2/r)

qb rc

S_S”:(S_S/)‘i‘(S/_S”)S f(



If we continue subtracting terms in this manner we eventually get down to
a sum Sy where

S-S5 < E 1e".2/p") ;

a
2<pe<z/logx p
and Sy is an integer. Proposition 1 now follows since

Z 1/n— Sy < F(z,c).

1<n<z
We will obtain explicit bounds on F'(z, ¢) by proving the following inequality
for f(p®, z/p®):
(p— 1)p*/lem{2,3,4,...,p%}, if p® < %logm
" e /p") < 20/ = 1), if Lloga < p < /3
4/log"*z, if vz < p* < z/(log” p?)

To prove the first case, when p® < %log x, we will show that

{lcm{?, 3,...,p%}

o : 1§u§(p—1)}§5(p,l‘),

and moreover that this set has a member in each residue class Z 0 (mod p).
Our bound f(p?®,z/p*) < (p — 1)p*/lem{2,3,...,p?} then follows. Using the
following identity we will have that the contribution of such small prime powers
to F(z,c)is < 1.

LEMMA 1.

p—1 . o - b . lem{2,3,...,¢*} — 1
— — : 2< < = .
Z{lcm{2,3,...,p“} =P = ,p,qprlme} lem{2,3, ..., ¢*}

The bound on f(p?, z/p®) where %log z < p® < /z comes directly from the
following lemma:

LEMMA 2. If p # 2 then f(p®,p®) < 20/(p® — 1) for p® > 3.

From this lemma we will show that the contribution of such prime powers
to F(z,c)is O(1/logx).

Finally, the bound on f(p®, z/p®) where \/z < p* < z/ log® ¢ & follows from
the following Proposition and its corollary.

PRrROPOSITION 2. Suppose € > 0 is given. There exists a number N, such
that whenever n > N. and k > log®t?“n, for any set of k distinct primes
2<p1<pa<--<pp < log3+36n which do not dwide n there is a subset

{qla q2, -+ Qt} g {plap2; "';pk}

such that 1 1 1
—+ —+4---4+—=1 (modn),
q1 q2 qt



for any given I with 0 <l < n.
Corollary to Proposition 2 Let § > 0 be given. There exists a constant Mg
so that, when Ms < p* < z/ log?"i'(S z,

4

[t z) < ——.
") <

We will show that the contribution of such prime powers to F'(z,3 + €) is
O(1/logz).
We show that the contribution of the prime powers p® with :t:/log?"i'E z <
p® <z to Fz,3+¢)is (3 + o(1))(loglogz)?/log z, and so we arrive at

ProprosITION 3. For all ¢ > 0 we have

F(z,3+¢) <1+ (% +0(1))(3 + €)*(loglog z)?/ log x.

With Propositions 1 and 3, and the fact that every integer can be written
as some Egyptian sum (see [5]), we prove the bound

n@)> | 3 - (§+0(1)) (loglog z)”

n log
1<n<z

as claimed in the Main Theorem. To get the bound

< | Y Lo (% +0(1)) 7(10?01;?)“

1<n<xz
we show that if 1 <nj; <ny <. - <ng<zand

1 1 1

ny Ny ng
is an integer, then none of the n;’s can be divisible by a prime p with z loglog z/logz <
p < z. From this and a technical lemma it follows that

1 1 1 1 1 (logl 2(1+0(1
S oo — o ~ > 3 _>§(ogog:f) ( o))
1§n§xn m Tk rlcglogr/l<ogr<p3z mp 0ogz

82. Proofs and Technical Lemmas.

Proof of Lemma 1. The lemma holds for ¢® = 2, since

3 _op=t 1
lem{2,...,p*} 2

2<pa<2
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Assume, for proof by mathematical induction, we have shown that the theorem
holds for all prime powers ¢”, where 2 < ¢® < r¢, where r° is some prime power.
We observe that lem{n : 2 <n <t} =lem{p® : 2 < p® <, pprime}.
Using this and the induction hypothesis we have

Y
lem{2,3,...,p%}

2<p<re

_ E p—1 n r—1
o lem{2,3,...,p?}  lem{2,3,...,r¢}

2<pa<re
_lem{2,3,...,r°=2,7° -1} - 1 r—1
lem{2,3,...,7¢— 2,7 — 1} + lem{2,3,...,7¢}
_r-lem{2,3,... =2, r° =1} —r r—1
lem{2,3,...,r¢} lem{2,3,...,r¢}
_lem{2,3,..., 7} =1
~ lem{2,3,...,r¢}

and so the theorem follows by mathematical induction.

Proof of Lemma 2. Suppose [ is any integer where 1 <! < (p — 1). The
number of pairs (21, z2) such that 1 <z < 22 <p®—1, pfzi22 and

i—|—iEl (mod p) (1)

I T2

is 1((p — 2)p?*~2 — 1) > 1 for p* > 3. Now, one of these pairs must have
z1 > p®/10, since the number of pairs (1, z2) with 21 < p®/10 satisfying (1)
is less than

p2a—1 1 5 9a_2 .

whenever p > 2. For this pair, we will have

1 1 2 20
—Ft =< =< .
T T3 T p

Since [ was arbitrary, it follows that

LEMMA 3. Let g(z) be the largest prime power such thatlem{2,3,4,...,g(z)} <
z. When g(z) > 2 we have that g(z) > %log x.

Proof of Lemma 3. Let h(z) be the next prime power after g(z). Since
7(z) < 2z/logx when z > 2 (see [4]) we have when h(z) > 2 that

2 <lem{2,3,...,h(z)} < h(z) @) < p(g)?h@)/leghl(e) — 2h(@)
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By Bertrand’s postulate that for n > 2 there is always a prime p with n < p <
2n we must have log z < 2h(z) < 4g(x) when h(z) > 2 and so g(z) > I log=
when g(z) > 2.

LEMMA 4.

Z 1 _ c_(loglogr) 40 (loglogr) .
o) o mepce TP 2 log log z

mp? >

Notice that since

1 1 loglogm log€ x
; mp? < ; 2 E z/log’ x ;1(

z/logCz<p® <z z/ log® E<p‘1§z a2
mpa <z mpa <z

Lemma 4 is also true if we replace the sum over primes by a sum over prime
powers between z/log®z and z.

Proof of Lemma 4. Using the estimate ) . 1/p = loglogz+B+o(1/logz)
(see [4]), we have for any z/log’z < t < z that

3 L loglogt — loglog & + o [ — 1 logt ) L o(L
— = loglogt — loglog — + o =log| ——— o| —
p &8 &8 € logt & logt —1 logt

t/e<p<t
_140(1)  1+0o(1)
~ logt  logz

Then

bl

> . >
©/ 10gC x<p<x P ©/ 10g® x<p<x
mp<e mp<e

Z E j+0(1)

1<j<leloglogal a/ei<p<ufei-t L

==

Z 1 _ E log (z/p) + O(1)
<z/p m

z/log®e<p<Le p

cloglog z
o oy ot
z/log®x<p<exr/log®c

_ Z j—li—O(l) 40 <lolglogm)
1<j<[cloglog z] og ¥ og T

_ ¢* (loglog z)* 0 loglog
T2 logx logz /°

83. Proof of Proposition 1. Let 2 = ¢3 < 3 = q2 < 4 = g3 < ... be the
sequence of prime powers. Let

1 1 a a C
E ——E —:n<z, n=mp* p*>z/log’z ;.
n n

2<n<z
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Choose r so that ¢, is the largest prime power dividing u/v (notice that ¢, <
z/log® ) and let u, /v, = u/v. Define T, := {n <z :p®ln=p® < z/log®z}
so that w,/v, = )7, cp 1/t. We shall recursively define wu;/v; and Tj, for
j=r—1,r—2,..,0 where u;/v; = ZtETj 1/t, T; C Tj41, and so that

(i) {n<z :p'n=p"<q} CTj and

(i) plv; = p* < 45,
where we take gg = 1. Then we take T = Tp in the Proposition since (ii)
implies vg = 1 so that ug/vg is an integer.

If ¢; does not divide v;, let Tj_1 = T; and uj_1/v;_1 = u;/v;; otherwise,
assume ¢; divides v; and suppose g; is some power of the prime p. Let [ =
g;uj/v; (mod p) and select, if we can, integers 1 < z1 < 29 < --- < zx < z/g;,
each belonging to S(q;,2/¢;), so that

1 1 1

=1 (mod p).
I 9 L

Then let S; := {q;x1,q;22,...,¢;xx}. Note that, by (1), S; C 7;. Define
T;_1:=T;\ S;. Thus

TR Eha

Vi
I ger, s€S;

We see immediately that (i) above is satisfied. Now

. 1 . 1 1
4 U_J_Z_ :w—<——|—~~—|——)50 (mod p).

() Vi x X
J SES; J 1 k

Since ¢; { vj_1 we have that (ii) is satisfied. Finally note that, by definition

Elg q]am/QJ)
S
€S;

9j
and so the Proposition follows.

84. Proof of Proposition 2 and its Corollary.

Proof of Proposition 2. Suppose that b is coprime to n, and let r,(a/b)
denote the least residue of ab~! (mod n) in absolute value. The number of

subsets of {p1, ..., px} whose sum of reciprocals is =/ (mod n) is then given by
n—1 k
1 —hl rn(h/pj)
h=0 7j=1

where e(z) is defined to be e2™%  Define

o f (e (222,



We will show that

when h # 0 and when n is sufficiently large. It will then follow that

n—1

151 = ‘%ZPM)

h=0

and thus there is at least one subset of {p1, ..., pg} with the desired property.
To prove (2) we note that

|P(h)] = f[ ¢ (%) { <%}2/p)) e <%>}

j=1

3)

We may write

s:n +
rn(h/p]): . - s

J

where 0 < h < (n— 1) and s; is an integer satisfying —[1p;] < s; < [3p;].
Define L(z) := log?t?* z+1. We will now show that when n is sufficiently large
at least %k of the s;’s have the property that |s;| > L(n). Since, if we suppose
there are infinitely many n where at least £k of the s;’s satisfy |s;| < L(n)
then, by the pigeonhole principle, there is a number m with |m| < L(n) such
that s; = m for at least

k/2 S log®t%¢ n
2L(n)+1 7 4log®**n+6

> logn

of the primes p; dividing mn + h when n is sufficiently large. However, this is
impossible for large n since |mn +h| < [n(L(n)+1)| < n? has o(logn) distinct
prime factors. Thus when n is sufficiently large at least %k of the s;’s satisfy
|s;| > L(n).

It follows that, when n is sufficiently large, at least %k of the p;’s satisfy

(s; =1n
pj

n
T .
+en

|rn (h/pj)| =

s:n+h
in- ‘>

J

log
We have for such primes p; that, when n is sufficiently large,

2 4
<7rrn(h/Py)> ‘ |yt <m<h/p]>) o ((m(h/pn) ) ‘
n 2 n n

T

2 1
<i- o )
2log?** n log*t*n
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3+2¢

and so, from (3), since k& > log n we have that

P(h)] < 2 (1 S S (é))m < ok T (5)
2log*t* n log*** n B n)’

which was just what we needed to show in order to prove our Proposition.

Proof of Corollary. Let Ns;3 be as in Proposition 2, and let Nj be the
smallest number so that when & > N there are at least 10g3+§5 z + 1 primes
q with %log3+5 r<g< log3+6 z where ¢ # p. Suppose [ is any number where
0<!< (p—1) and p® is any prime power where

z/log®tz > p* > My = max{Ns/3, N5}.

By Proposition 2 there are primes ¢, qs, ..., ¢ with
1
Flog® e <qi <g2 < <qe<log*e

and t < log3+3%2 + 1 such that

1 1 1
—+—+--+—=1 (modp).
91 92 qt
Also .
1 1 t 2(log®t3% 2 + 1) 4
—+ -+ =< < < .
71 qt % log3+6 xr log?""‘S x logé/?’ z

Since this bound holds for all I with 0 <! < (p — 1) the Corollary follows.
§5. Proof of Proposition 3. Let g(z) be as in Lemma 3. We may then write

F(z,34 €)= A(z) + B(z) + C(z) + D(z) + E(z),

where . .
Alz) = flp ,f/p )’
2<p*<g(x) b
J(p®, x/p*
B(z) = Z (T/)’
g(z)<pr<V/T

Clz) = 3 fp*, =/p")

a
VT<pi<z/logtz p

D(z) = 3 fw,2/p%) and

pe ’

)

z/logl r<pi<z/logtcx

1
E(z) = E{mp“ cz/log? T r < pt <z, mp? < m}




11

From Lemma 4 we have that E(z) = (3 +0(1))(3+¢)*(loglog )/ log z. We
will show that A(z) < 1 and that B(z), C(z) and D(z) are each O(1/logz)

and so the Proposition will follow.

For each prime power p? define

Uy 1= {lcm{2, 3,...,p%}

:1<u<(p—1)}.
phu -

We have that U, C S(p®, z/p?), for p* < g(z). Also, for each { with 1 <
[ < (p—1), there is an element y € Up« such that 1/y =1 (mod p). Thus for
p* < g(z) we have

1 pi(p—1)

flp® =/p") < min(Ua) - lem{2,3, ..., p%}

From this and Lemma 1 it follows that

A= Y fp*,z/p")

pd

Z p—1 _lem{2,3, ..., g(2)} -1
)1cm{2,3,...,p‘1}_ lem{2,3,...,9(z)}

INA

2<p*<g(=

Thus A(z) < 1.

By Lemma 2, if p # 2 and p® < /z then f(p°,z/p®) < f(p*,p*) < 20/p°.
Thus by this and Lemma 3 we have for g(z) > 2 that

By = Y F,x/p) _ T fp*, z/p")

a a
goy<pecve T Loga<pa<ys 1
1 20 4 1
Y L Y Biliwmy d
2“>%log:c %IOgr<p“§\/§ n>%log:c
p odd

o)
log

By the Corollary to Proposition 2 when z is sufficiently large and p* <
z/log”  we have f(p®,z) < 4/logp®. Then for z sufficiently large we have

“ o /p® 1 1
ow= L, v =0
_ p° p®log p* logz
Vz<pa<z/logtz Vr<palz/logt

by the Prime Number Theorem.
Again by the Corollary to Proposition 2 we have when z 1is sufficiently large
and p® < z/log®**(x) that f(p®, z) < 4/log®? p® = O(1/log*’® z). Thus

D) = 3 I a/p?) 64/3‘1 T 1

pe log™” & pe
z/logb(z)<pa<z/logite(z) z/logf r<pa<z/logite

_ loglog x
=0 <10g1+6/31‘) .
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86. Proof of the Main Theorem. From Propositions 1 and 3 we have that
there is an integer integer 7(z) € N(z) with

2 log

(2) > Z 1 ] 9(loglog:p)2(1—|—o(1)).

Thus

Z l_g(loglogag)?(l—ko(l)) < r(a) < E %

n log z
1<n<x 1<n<z
Therefore there exists an zg so that when > xy we have

0<|r(z+1) - 7(2)]

< Z 1 Z %_g(logloga:)2(1+o(1)) <1

n log -
1<n<r+1 1<n<z

Tt follows that when z > 2 is sufficiently large so that 7(z¢) < n < 7(z), then
n = 7(t) for some z¢g <t < z. In particular this says that if 7(z¢) < n < 7(z)
then there exist integers 1 < nj; < ny < --- < ng < z, for some k, so that

1 1

m ng
As a consequence of the main result in [5] (and [6]) we have that for z suffi-
ciently large and 1 < n < 7(2q), there exist integers 1 < nj <ng < - < ng <
xg, for some k, so that

1 1
n ng

We conclude that when = > xg,

(loglog #)*(1 + o(1))
log

w2 @) > | Y -]

1<n<z

as claimed.

Suppose now that 1 < ny < ns < --- < ng <z has the property that

1 1 1

ny 1y ng
is an integer. We claim that none of the n;’s has a prime factor greater than
zloglogz/loga: for suppose p is such a prime and let n;, = pmy, n;, =
pma, ..., n;, = pmy be all the n;’s divisible by p. Since (z loglogz/logz)m; <
pm; < & we have that such m; < log 2/ loglog z and therefore [ < log 2/ loglogz.
Also, since
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is an integer, we must have p{ v and yet

1 1 1 loga: =1 logl‘ !
plmmy--my | —+ —4- -+ — | <l —— < [ -
my My my loglog x loglog =
log x
< log )“’g“g” < zloglog =

loglog x log = <P

We conclude that no n; is divisible by p > xl%gl%_x. Using this fact and Lemma
4 we get the bound

E:}*'X:i> 3 _L:;mm%w%uwu»
n n; mp 2 log z

K3

1<n<x 1<i<k zlzlaoggligm<psm
mp<a
and so
1 1(loglogz)?(1+ o(1))
x) < - =
n(@) < E 2 log z
1<n<z
as claimed.

87. Proof of the Corollary to the Main Theorem. Fix an € > 0. Let m be a
sufficiently large positive integer and select z for which

2
m < 1 2_1_6 (loglog z)
n 2 log
1<n<x
1 log log x)?
:logm—i-'y—i-() — ] — 9_}.6 M’
z 2 log

From the Main Theorem we know that for m sufficiently large there exist
integers 1 < ny < ng < --- < ng <z, for some k, so that

m=— 4+ —. (4)

Since z > ¢”t9() we have that n < logz 4~ — (2 +c+o0(1))(log?n)/n. Thus,
as long as z satisfies

2
> 6n—7+(%+6+0(1))(10g2n)/n — Y {1 + (9 +€+0(1)) log n}
2 n ’

equation (4) above has a solution with ny < z. Since € > 0 was arbitrary, the
Corollary follows.
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