The structure of critical sets for \mathbb{F}_p arithmetic progressions

Ernie Croot

October 1, 2009

1 Introduction

Given a function $h : \mathbb{F}_p \times \mathbb{F}_p \times \cdots \times \mathbb{F}_p \to \mathbb{C}$, we define the usual expectation operator

$$\mathbb{E}_{n_1,...,n_k}(h) := p^{-k} \sum_{n_1,...,n_k \in \mathbb{F}_p} h(n_1,...,n_k).$$

We also define, for $f : \mathbb{F}_p \to \mathbb{C}$, the operator

$$\Lambda(f) := \mathbb{E}_{n,d}(f(n)f(n+d)f(n+2d)).$$

If f were an indicator function for some set $S \subseteq \mathbb{F}_p$, this would give a normalized count of the number of three-term progressions in S.

In the present paper we establish a new structure theorem for functions $f : \mathbb{F}_p \to [0, 1]$ that minimize the number of three-term progressions, subject to a density constraint; and, as a consequence of this result, we prove a further structural result, which can also be deduced from the work of Green [3], though only for high densities (Green's result only works for densities exceeding $1/\log_*(p)$, though perhaps his method can be generalized for this particular problem to handle lower densities).

Before stating the theorem, it is worth mentioning that Green and Sisask [5] have shown that sets of high density (density close to 1) that minimize the number of three-term arithmetic progressions, are the complement of the union of two long arithmetic progressions (actually, their result is stated in terms of sets that maximize the number of three-term progressions, but there is a standard trick to relate this to the minimizing sets).

Our main theorem is now given as follows:

Theorem 1 Suppose that

$$f : \mathbb{F}_p \to [0,1]$$

minimizes $\Lambda(f)$, subject to the constraint that

$$\mathbb{E}(f) \geq \theta \in (0,1].$$

Then,

• Let C(n) equal f(n) rounded to the nearest integer, which is therefore 0 or 1. Then,

$$\sum_{n} |f(n) - C(n)| \ll p(\log p)^{-2/3}$$

So, f must be approximately an indicator function.

• We have that there exist sets A and B of \mathbb{F}_p , with $|A| > p^{1-o(1)}$ and $|B| > p^{1/2}$, such that the set for which f is approximately an indicator function, is roughly the sumset A + B. More precisely: If we let C(n) denote f rounded to the nearest integer, as in the first bullet above, then

$$\sum_{n} |(A * B)(n) - |B|C(n)| \ll p|B|(\log \log p)^{-2/3}$$

Furthermore, we may take A = C and take B to be a certain "Bohr neighborhood" \mathcal{B} , which is described in the proof of the theorem.

1.1 Remarks about the second bullet

What the second bullet is basically saying is the following: from the first bullet we know that f(n) is usually very close to C(n), which is an indicator function. So, |B|f(n) is very close to |B|C(n); and therefore, the conclusion of the second bullet is basically telling us that

$$f(n) \sim |B|^{-1}(A * B)(n)$$

for "most" elements $n \in \mathbb{F}_p$.

It should be remarked that sumsets are quite special structures, and only a vanishingly small proportion of the subsets of \mathbb{F}_p are sumsets or form the support of a smooth function; so, the second bullet is saying something fairly non-trivial about our minimal f.

Also, there are loads of other consequences that one can deduce from the second bullet. One of these is that, upon decomposing the Bohr neighborhood \mathcal{B} into a union of arithmetic progressions, one can deduce that C is essentially the union of a "small number" of somewhat "long" arithmetic progressions ("small number" can mean a power of p, say p^c , where c < 1), all having the same common difference.

2 Proof of Theorem 1

The proof of this structure theorem depends on a certain function r_3 , which we presently define.

Definition. Given a subset S of a group G, we let $r_3(S)$ denote the size of the largest subset of S free of solutions to x + y = 2z, $x \neq y$. In all the uses of r_3 in the present paper, $G = \mathbb{Z}$ and $S = [N] := \{1, 2, ..., N\}$, for various different values of N.

Bourgain [2] has recently shown that

$$r_3([N]) \ll N(\log N)^{-2/3},$$
 (1)

and from a result of Behrend [1], we know that for N sufficiently large,

$$r_3([N]) > N \exp(-c\sqrt{\log N}),$$

for a certain constant c > 0.

2.1 Proof of the first part of Theorem 1

For this part we will begin by assuming that $\mathbb{E}(f) > \kappa p(\log p)^{-2/3}$, for as large a $\kappa > 0$ as we might happen to need, since this part of the theorem is trivially true otherwise.

Here we will first show that the minimal f is well-approximated by an indicator function; actually, we will prove even more – we will show that if $\Lambda(f)$ comes within $O(p^{-1})$ of this smallest value, subject to the density constraint $\mathbb{E}(f) > \theta$, then f must be approximately an indicator function. To do this, we will require the following proposition, proved in subsection 2.3.

Proposition 1 Suppose that A and B are disjoint subsets of \mathbb{F}_p , such that $f : \mathbb{F}_p \to [0, 1]$ has the property

for
$$n \in A$$
, $f(n) \leq 1 - \varepsilon$, $0 < \varepsilon < 1/3$,

and suppose that

 $\operatorname{support}(f) = A \cup B.$

Then, for $\beta > 0$ satisfying

 $\varepsilon \beta \geq p^{-1/2} \log p,$

there exists a function $g: \mathbb{F}_p \to [0,1]$ such that

$$\mathbb{E}(g) \geq \mathbb{E}(f),$$

and yet

$$\Lambda(g) < \Lambda(f) + 2\beta - \varepsilon^2 p^{-2} W_0 / 4 + O(p^{-1}),$$

where

$$W_0 := \sum_{a,a+d,a+2d \in A} f(a) f(a+d) f(a+2d).$$

We also will require the following quantitative version of Varnavides's theorem [7].

Lemma 1 If $S \subseteq \mathbb{F}_p$ satisfies $|S| \ge 2(r_3(N)/N)p$, we will have for any $2 \le N \le p$ that

$$\Lambda(S) \geq \frac{2r_3([N])}{N^3 + O(N^2)}.$$

Proof of the Lemma. The proof of this lemma is via some easy averaging: We let \mathcal{A}_N denote the set of all arithmetic progressions $A \subseteq \mathbb{F}_p$ having length N. These arithmetic progressions are to be identified by ordered pairs (a, d), $d \neq 0$, where a is the first term in the progression, and where d is the common difference. Note that this means we "double count" arithmetic progressions in that the progression a, a + d, a + 2d, ..., a + kd is distinct from a + kd, a + (k - 1)d, ..., a.

It is easy to check that each sequence $a, a + d, a + 2d, d \neq 0$ is contained in exactly $N^2/2 + O(N)$ of these $A \in \mathcal{A}_N$: We have that each three-term progression is contained in the same number of $A \in \mathcal{A}_N$, and each $A \in \mathcal{A}_N$ contains $N^2/2 + O(N)$ three-term progressions; hence, if P denotes the number of $A \in \mathcal{A}_N$ containing a particular sequence a, a+d, a+2d, we have since there are p(p-1) non-trivial progressions in \mathbb{F}_p , that

$$p(p-1)P = |\mathcal{A}_N|(N^2/2 + O(N)),$$

whence $P = N^2/2 + O(N)$.

So, if we let $T_3(X)$ denote the number of sequences $a, a + d, a + 2d \in X$, $d \neq 0$, we have that

$$T_3(S) = (N^2/2 + O(N))^{-1} \sum_{A \in \mathcal{A}_N} T_3(A \cap S).$$
 (2)

Next, we need a lower bound on how many $A \in \mathcal{A}_N$ satisfy $|A \cap S| \ge r_3(N)$: First, note that for each $d \in \mathbb{F}_p$, $d \ne 0$, there are exactly N arithmetic progressions $A \in \mathcal{A}_N$ having common difference d that contain a particular point $a \in \mathbb{F}_p$. So,

$$\sum_{A \in \mathcal{A}_N} |A \cap S| = \sum_{s \in S} \sum_{\substack{d \in \mathbb{F}_p \\ d \neq 0}} N = (p-1)N|S|.$$

Let Y be the number of $A \in A_N$ for which $|A \cap S| > r_3(N)$. Then, we have

$$(|\mathcal{A}_N| - Y)r_3(N) + YN \geq (p-1)N|S|,$$

which implies

$$Y \geq \frac{(p-1)N|S| - |\mathcal{A}_N|r_3(N)}{N - r_3(N)} \geq (p-1)|S| - |\mathcal{A}_N|(r_3(N)/N).$$

For each of these Y progressions $A \in \mathcal{A}_N$ we will have that $T_3(A \cap S) \ge 1$; and so, we deduce from (2) that

$$T_3(S) \geq \frac{(p-1)|S| - |\mathcal{A}_N|(r_3(N)/N)}{N^2/2 + O(N)}$$

Using the easy to see fact that $|\mathcal{A}_N| = p(p-1)$, we deduce that if

$$|S| > 2(r_3(N)/N)p,$$

then

$$T_3(S) \geq \frac{2p^2(r_3(N)/N)}{N^2 + O(N)}.$$

The lemma easily follows on rephrasing this in terms of $\Lambda(S)$.

Now we let

$$A := \{ n \in \mathbb{F}_p : f(n) \in [\varepsilon, 1 - \varepsilon] \},\$$

where $\varepsilon > 0$ will be determined later. In order for f to be minimal, from Proposition 1 we deduce that we must have that if $\varepsilon \beta = p^{-1/2} \log p$, then

$$\beta \geq \varepsilon^2 p^{-2} W_0 / 8 + O(1/p).$$

So, since we trivially have that

$$W_0 \geq \varepsilon^3 p^2 \Lambda(A),$$

it follows that

$$\Lambda(A) \leq 8\varepsilon^{-6} p^{-1/2} \log p. \tag{3}$$

We would like to now apply Lemma 1 to this, but in order to do so, we must solve for N such that

$$|A| > 2r_3(N)p/N.$$

To this end, we require the bound (1) of Bourgain, which implies that if we let

$$N = \exp(c(p/|A|)^{3/2}) < p$$
, since $|A| > \kappa p(\log p)^{-2/3}$,

then we will have that

$$|A| > p(\log N)^{-2/3} > 2r_3(N)p/N,$$

as we require.

From this it follows from Lemma 1 that

$$\Lambda(A) > r_3(N)/N^3 > 1/N^3 > \exp(-3c(p/|A|)^{3/2}).$$

It follows now from (3) that

$$|A| \ll p \log^{-2/3}(\varepsilon^{12}p), \text{ for } \varepsilon > p^{-1/12} \log p.$$

So, if we let C be the function f rounded to the nearest integer (which will be either 0 or 1), then for $n \in A$ we will have $|f(n) - C(n)| \le 1$, while for all other n we will have $|f(n) - C(n)| \le \varepsilon$. It follows that

$$\sum_{n} |f(n) - C(n)| \ll (\varepsilon + (\log \varepsilon^{12} p)^{-2/3})p, \text{ for } \varepsilon > p^{-1/12} \log p.$$

Choosing $\varepsilon = (\log p)^{-2/3}$, we deduce that this sum is $O(p(\log p)^{-2/3})$, just as in Bourgain's theorem (1). This completes the proof of the first part of our theorem.

2.2 Proof of the second part of Theorem 1

We assume for this part of the proof of our theorem that $\theta > (\log \log p)^{-2/3}$, since our problem is trivial otherwise.

We now prove the second bullet of Theorem 1. To this end, we let

$$f_3(n) := (f * \mu)(n),$$

where μ is defined as follows: First, we locate the places $b_1, ..., b_t$ where the Fourier transform

$$|f(b_i)| > \varepsilon_0 p_i$$

where $\varepsilon_0 > 0$ will be decided later, and then we define the Bohr neighborhood \mathcal{B} to be all those $n \in \mathbb{F}_p$ where

$$||b_i n/p|| < \varepsilon_0$$
, for all $i = 1, ..., t$

Finally, we just let $\mu(n) = 1/|\mathcal{B}|$ if $n \in \mathcal{B}$, and $\mu(n) = 0$ otherwise.

Our goal now will be to show that

$$\sum_{n} |f_3(n) - f(n)| \ll p(\log \log p)^{-2/3},$$
 (4)

for this will imply the second bullet of Theorem 1 holds: To see this, note that from the already-proved first bullet, we know that if we let C(n) be f(n) rounded to the nearest integer, then

$$\begin{split} \sum_{n} ||\mathcal{B}|^{-1} (C * \mathcal{B})(n) - C(n)| &= \sum_{n} ||\mathcal{B}|^{-1} (f * \mathcal{B})(n) - f(n)| + O(p(\log p)^{-2/3}) \\ &= \sum_{n} |f_{3}(n) - f(n)| + O(p(\log p)^{-2/3}) \\ \ll p(\log \log p)^{-2/3}, \end{split}$$

which is just what the second bullet claims.

Now we show that (4) holds: First note that Parseval gives

$$t \leq \theta \varepsilon_0^{-2};$$

and the following standard lemma tells us that our Bohr neighborhood is "large".

Lemma 2 We have that

$$|\mathcal{B}| \geq (\varepsilon_0 + O(1/p))^t p.$$

Proof of the lemma. For i = 1, 2, ..., t, we let

$$\alpha_i(x) := (\varepsilon_0 p + 1)^{-1} \left(\sum_{||b_i n/p|| < \varepsilon_0/2} e^{2\pi i n x/p} \right)^2$$

We note that $\alpha_i(x)$ is always a non-negative real for all real numbers x, and α_i is the Fourier transform of a function $\beta_i : \mathbb{F}_p \to [0, 1]$. Furthermore,

$$|\alpha_i(0)| = \varepsilon_0 p + O(1).$$

Now letting

$$\beta(n) := (\beta_1 \cdots \beta_t)(n),$$

we find that $\beta : \mathbb{F}_p \to [0, 1]$, and has support contained within \mathcal{B} . So,

$$|\mathcal{B}| \geq \hat{\beta}(0) = p^{-t+1}(\hat{\beta}_1 * \hat{\beta}_2 * \cdots * \hat{\beta}_t)(0)$$

$$= p^{-t+1}(\alpha_1 * \alpha_2 * \cdots * \alpha_t)(0)$$

$$\geq p^{-t+1}\alpha_1(0) \cdots \alpha_t(0)$$

$$\geq (\varepsilon_0 + O(1/p))^t p.$$

Now, from the easy-to-check fact that

$$||\hat{f}_3(a) - \hat{f}(a)||_{\infty} = ||\hat{f}(a)(1 - \hat{\mu}(a))||_{\infty} \le \varepsilon_0 p,$$

we easily deduce, via standard arguments (Parseval and Cauchy-Schwarz) that

$$\begin{split} \Lambda(f_3) &= p^{-3} \sum_a \hat{f}_3(a)^2 \hat{f}_3(-2a) &= p^{-3} \sum_a \hat{f}(a)^2 \hat{f}(-2a) + E \\ &= \Lambda(f) + E, \end{split}$$

where the "error" E satisfies

$$|E| \leq 10\varepsilon_0.$$

Now let A be all those $n \in \mathbb{F}_p$ for which

$$f_3(n) \in [\varepsilon_1, 1 - \varepsilon_1].$$

Then, we have that

$$W_0 := \sum_{a,a+d,a+2d \in A} f_3(a) f_3(a+d) f_3(a+2d) \ge \varepsilon_1^3 p^2 \Lambda(A).$$

In order to apply Lemma 1 to this, we let

$$N = \exp(c(p/|A|)^{3/2}) < p,$$

so that from (1) we deduce that

$$|A| > p(\log N)^{-2/3} > 2r_3(N)p/N,$$

as we require.

From this it follows now from Lemma 1 that

$$\Lambda(A) \geq \frac{2r_3(N)}{N^3 + O(N^2)} > 1/N^3 \gg \exp(-3(2p/|A|)^{3/2}),$$

for N sufficiently large.

In order for $\Lambda(f)$ to be minimal, we must have that

$$\Lambda(f) \leq \Lambda(f_3) \leq \Lambda(f) + 2\beta + 10\varepsilon_0 - \varepsilon_1^2 p^{-2} W_0/4 + O(1/p).$$

Setting $\beta = 5\varepsilon_0$ we must have

$$20\varepsilon_0 \geq \varepsilon_1^2 p^{-2} W_0/2 + O(1/p) \geq \varepsilon_1^5 \Lambda(A)/2 + O(1/p);$$

and so,

$$\Lambda(A) \leq 80\varepsilon_0\varepsilon_1^{-5} + O(1/p).$$

Combining this with our lower bound for $\Lambda(A)$ above, we deduce that

$$|A| \ll p(\log \varepsilon_1^5 \varepsilon_0^{-1})^{-2/3}.$$

It now follows that if C(n) is $f_3(n)$ rounded to the nearest integer, then

$$\begin{split} \sum_{n} |f_{3}(n) - C(n)| &\leq \sum_{n \in A} 1/2 + \sum_{n \in \mathbb{F}_{p} \setminus A} \varepsilon_{1} \\ &\ll p(\log \varepsilon_{1}^{5} \varepsilon_{0}^{-1})^{-2/3} + \varepsilon_{1} p. \end{split}$$

Now we will set

$$\varepsilon_0 := \sqrt{\theta \log \log p / \log p}$$
, and $\varepsilon_1 := (\log \log p)^{-2/3}$,

which will give

$$|\mathcal{B}| > p^{1/2}$$

and then our sum on $|f_3(n) - C(n)|$ will be at most

$$\sum_{n} |f_3(n) - C(n)| \ll p(\log \log p)^{-2/3},$$

which completes the proof of Theorem 1.

2.3 Proof of Proposition 1

2.3.1 Technical lemmas needed for the proof of the Proposition

We will need to assemble some lemmas to prove this proposition. We begin with the following standard fact:

Lemma 3 Suppose that $S \subseteq \mathbb{F}_p$ satisfies $|S| = \alpha p$. Let T denote the complement of S. Then, we have that

$$\Lambda(S) + \Lambda(T) = 1 - 3\alpha + 3\alpha^2.$$

Proof of the lemma. One way to prove this is via Fourier analysis: We have that

$$\Lambda(S) + \Lambda(T) = p^{-3} \sum_{a} (\hat{S}(a)^2 \hat{S}(-2a) + \hat{T}(a)^2 \hat{T}(-2a)).$$

Since $\hat{S}(a) = -\hat{T}(a)$ for $a \neq 0$, we have that all the terms except for a = 0 vanish. So,

$$\Lambda(S) + \Lambda(T) = p^{-3}(\hat{S}(0)^3 + \hat{T}(0)^3) = \alpha^3 + (1 - \alpha^3) = 1 - 3\alpha + 3\alpha^2.$$

From this lemma, one can deduce the following corollary, which we state as another lemma:

Lemma 4 For $\alpha > 2/3$ we have that there exists a set $S \subseteq \mathbb{F}_p$ satisfying $|S| = \lfloor \alpha p \rfloor$, and

$$\Lambda(S) \leq \alpha^3 (1 - (1 - \alpha)^2 / 2) + O(1/p).$$

Proof of the Lemma. Let $\beta = 1 - \alpha < 1/3$, and then let S just be the arithmetic progression $\{0, 1, ..., \lfloor \alpha p \rfloor - 1\}$, and then let T be the complement of S, which is also just an arithmetic progression. It is easy to check that

$$\Lambda(T) = |T|^2/2p^2 + O(|T|/p^2) = \beta^2/2 + O(1/p),$$

as the solutions to x + y = 2z, $x, y, z \in T$ are exactly those ordered pairs $(x, z) \in T \times T$ of the same parity.

Applying Lemma 3 to this set T, we find that

$$\begin{split} \Lambda(S) &= (1 - 3\beta + 3\beta^2) - \beta^2/2 + O(1/p) \\ &= 1 - 3\beta + 5\beta^2/2 + O(1/p) \\ &< (1 - \beta)^3(1 - \beta^2/2) + O(1/p), \end{split}$$

as claimed.

2.3.2 Body of the proof of Proposition 1

We will define the function $g: \mathbb{F}_p \to [0, 1]$ such that

$$\operatorname{support}(g) \subseteq A \cup B_{2}$$

where

for
$$n \in B$$
, $g(n) = f(n)$,

but on the set A, the function g will be different from f: Basically, we let S be the set produced by Lemma 4 with $\alpha = 1 - \varepsilon$, then take T to be a random translate and dilate of S, say

$$T := m.S + t = \{ms + t : s \in S\}.$$

Then, we let

for
$$n \in A$$
, $g(n) = (1 - \varepsilon)^{-1} f(n) T(n)$.

Note that this is ≤ 1 , because we know $f(n) \leq 1 - \varepsilon$ on A.

We will show that, so long as there are "enough" three-term progressions lying in A, this new function g will have the property that $\Lambda(g)$ is much smaller than $\Lambda(f)$. To this end, we consider three types of arithmetic progressions that give rise to the counts $\Lambda(f)$ and $\Lambda(g)$: Those progressions that pass through both A and B (say one point in A and two in B; or two in A and one in B); those that lie entirely within A; and those that lie entirely within B.

The contribution to $\Lambda(g)$ of those arithmetic progressions lying entirely within B is the same as the contribution to $\Lambda(f)$. So, we don't need to account for these when trying to prove our upper bound on $\Lambda(g)$; and therefore there are only two non-trivial cases that we need to work out:

Case 1 (all three points in A).

Define the random variable

$$Z_0 := \sum_{a,a+d,a+2d \in A} g(a)g(a+d)g(a+2d),$$

and let W_0 be the analogous sum but with g replaced by f. We note that if we only consider those terms with $d \neq 0$, we lose at most O(p) in estimating Z_0 .

We have that

$$\mathbb{E}(Z_{0}) = \sum_{\substack{a,a+d,a+2d \in A \\ d \neq 0}} \mathbb{E}(g(a)g(a+d)g(a+2d)) + O(p) \\
= p^{-2}(1-\varepsilon)^{-3} \sum_{\substack{a,a+d,a+2d \in A \\ d \neq 0}} f(a)f(a+d)f(a+2d) \sum_{\substack{m,t \in \mathbb{F}_{p} \\ a,a+d,a+2d \in m.S+t}} 1 + O(p) \\
= p^{-2}(1-\varepsilon)^{-3} \sum_{\substack{a,a+d,a+2d \in A \\ d \neq 0}} \sum_{\substack{m,t \in \mathbb{F}_{p} \\ mb+t=a, m(b+d')+t=a+d}} f(a)f(a+d)f(a+2d) + O(p).$$

To estimate this inner sum, we note that the contribution of those terms with d' = 0 is 0; and, when $d' \neq 0$, we get a contribution of f(a)f(a+d)f(a+2d) to just the inner sum, because there is only one pair m, t which works. Thus, we deduce from this and Lemma 4 that

$$\mathbb{E}(Z_0) = p^{-2}(1-\varepsilon)^{-3} \sum_{\substack{b,b+d',b+2d' \in S \\ a,a+d,a+2d \in A}} f(a)f(a+d)f(a+2d) + O(p) \\
= (1-\varepsilon)^{-3} \Lambda(S) W_0 + O(p) \\
< (1-\varepsilon^2/2) W_0 + O(p).$$

Case 2 (at least one point in A, and at least one in B).

Define the random variables

$$Z_{1} := \sum_{\substack{a,a+d \in A \\ a+2d \in B}} g(a)g(a+d)g(a+2d)$$

$$Z_{2} := \sum_{\substack{a,a+2d \in A \\ a+d \in B}} g(a)g(a+d)g(a+2d)$$

$$Z_{3} := \sum_{\substack{a+d,a+2d \in A \\ a \in B}} g(a)g(a+d)g(a+2d)$$

$$Z_{4} := \sum_{\substack{a \in A \\ a+d,a+2d \in B}} g(a)g(a+d)g(a+2d)$$

$$Z_{5} := \sum_{\substack{a+d,a+2d \in B \\ a,a+2d \in B}} g(a)g(a+d)g(a+2d)$$

$$Z_{6} := \sum_{\substack{a+2d \in A \\ a,a+d \in B}} g(a)g(a+d)g(a+2d).$$

Also, let $W_1, ..., W_6$ be the analogous constants with g replaced by f (note that these are not random variables).

We will now compute the expectations of these random variables; though, we will not do all of these here, and instead will just work it out for Z_1 , as showing it for all the others can be done in exactly the same way, and leads to the same bounds.

We have that

$$\mathbb{E}(Z_1) = \sum_{a+2d \in B} f(a+2d) \sum_{a,a+d \in A} \mathbb{E}(g(a)g(a+d)).$$

To evaluate this last expectation, let us suppose that $a + 2d \in B$ and $a, a + d \in A$, where $d \neq 0$ (if d = 0 then we would have that a lies both in A and B, which is impossible). Then, given any pair of distinct elements $x, y \in S$, there exists a unique pair $(m, t) \in \mathbb{F}_p \times \mathbb{F}_p$ such that

$$mx + t = a$$
 and $my + t = b$.

So, the probability that

$$g(a)g(a+d) = (1-\varepsilon)^{-2}f(a)f(a+d),$$

given $a + 2d \in B$, $a, a + d \in A$, is $1/p^2$ times the number of ordered pairs (x, y) of distinct elements of S, which is |S|(|S|-1). Note that if g(a)g(a+d) is not equal to this, then it must take the value 0. It follows that

$$\mathbb{E}(Z_1) = p^{-2}|S|(|S|-1)(1-\varepsilon)^{-2}W_1 = W_1 + O(p).$$
(5)

Likewise for the other Z_i , we will have that

$$\mathbb{E}(Z_i) = W_i + O(p).$$

Collecting the two cases together.

Let Z_7 denote the contribution of arithmetic progressions lying entirely in B; that is,

$$Z_7 = \sum_{b,b+d,b+2d \in B} f(b) f(b+d) f(b+2d) = \sum_{b,b+d,b+2d \in B} g(b) g(b+d) g(b+2d).$$

Note that in this case $W_7 = Z_7$.

Putting together our above estimates, and using the fact that

$$\Lambda(g) = p^{-2}(Z_0 + \dots + Z_7),$$

we find that

$$\mathbb{E}(\Lambda(g)) = p^{-2}(W_0 + \dots + W_7 - \varepsilon^2 W_0/2 + O(p)) = \Lambda(f) - \varepsilon^2 p^{-2} W_0/2 + O(1/p).$$

Using Markov's inequality we have

$$\operatorname{Prob}(\Lambda(g) < \Lambda(f) - \varepsilon^2 p^{-2} W_0/4) \geq 1 - \frac{\mathbb{E}(\Lambda(g))}{\Lambda(f) - \varepsilon^2 p^{-2} W_0/4} > \varepsilon^2/8,$$

since $\Lambda(f) \ge p^{-2}W_0$.

$\mathbb{E}(g)$ is close to $\mathbb{E}(f)$ with high probability.

Before we "derandomize" and pass to an instantiation of g, we will need to also show that $\mathbb{E}(g)$ is close to $\mathbb{E}(f)$ with high probability. This can be accomplished in several different ways, though here we will just use the second moment method: First, let

$$F := \sum_{a \in A} f(a)$$
, and $G := \sum_{a \in A} g(a)$.

Now, as is easy to show, $F + O(1/p) = \mathbb{E}(G)$; and so, since $\varepsilon \beta > p^{-1/2} \log p$, we have that

$$\operatorname{Prob}(|F - G| \ge 2\beta p) \le \operatorname{Prob}(|G - \mathbb{E}(G)| \ge \beta p).$$
(6)

It follows from Chebychev's inequality that this last probability is at most

$$\frac{\operatorname{Var}(G)}{\beta^2 p^2} = \frac{\mathbb{E}(G^2) - \mathbb{E}(G)^2}{\beta^2 p^2}.$$

To bound this from above we observe that

$$\mathbb{E}(G^2) = \sum_{a,b\in A} \mathbb{E}(g(a)g(b)).$$

Now, as a consequence of what we worked out just before (5), we have that g(a) and g(b) are independent whenever $a \neq b$. So,

$$\mathbb{E}(G^2) = \mathbb{E}(G^2) + O(p),$$

and it follows that the probability of the right-most event in (6) is at most $O(\beta^{-2}/p)$. It is easy to see that with probability $1 - O(\beta^{-2}/p)$ we will have

$$\mathbb{E}(g) \geq \mathbb{E}(f) - 2\beta. \tag{7}$$

Conclusion of the proof.

It follows that with probability at least

$$(1 - O(\beta^{-2}/p)) + \varepsilon^2/8 - 1$$

we will have that

$$\mathbb{E}(g) \geq \mathbb{E}(f) - 2\beta$$
 and $\Lambda(g) \leq \Lambda(f) - \varepsilon^2 p^{-2} W_0 / 4 + O(1/p).$

Using our assumption that

$$\varepsilon \beta > p^{-1/2} \log p,$$

we have that this probability is positive. So, there exists an instantiation of g such that both hold; henceforth, g will no longer be random, but will instead be one of these instantiations.

By reassigning at most $2\beta p$ places $a \in A$ where g(a) = 0 to the value 1, we can guarantee that $\mathbb{E}(g) \geq \mathbb{E}(f)$, and one easily sees that

$$\Lambda(g) < \Lambda(f) + 2\beta - \varepsilon^2 p^{-2} W_0/4 + O(1/p).$$

This completes the proof of our proposition.

References

- F. A. Behrend, On the Sets of Integers Which Contain No Three in Arithmetic Progression, Proc. Nat. Acad. Sci. 23 (331-332), 1946.
- [2] J. Bourgain, Roth's Theorem on Progressions Revisited, preprint.
- [3] B. Green, A Szemerédi-Type Regularity Lemma in Abelian Groups, Geom. and Funct. Anal. 15 (2005), 340-376.
- [4] —, Roth's Theorem in the Primes, Annals of Math. **161** (2005), 1609-1636.
- [5] B. Green and O. Sisask, On the Maximal Number of Three-Term Arithmetic Progressions in Subsets of Z/pZ, preprint on the ARXIVES.
- [6] B. Green and I. Ruzsa, Counting Sumsets and Sumfree Sets Modulo a Prime. Studia Sci. Math. Hungar. 41 (2004), 285-293.
- [7] P. Varnavides, On Certain Sets of Positive Density, J. London Math. Soc. 34 (1959), 358-360.