ON UNIT FRACTIONS WITH
DENOMINATORS IN SHORT INTERVALS

BY ERNEST S. Croort III

Dedicated to the memory of Paul Erdds

Abstract: In this paper we prove that for any given rational r > 0 and all
N > 1, there exist integers N < z1 < 23 < -+ < 2} < e™+°(1) N such that

This solves an open question of Erdés and Graham.

I. INTRODUCTION

Let X denote the set
F1
{z1,..,xp} : Z—zl, O<ry < - <y

v
j=1"7

Erdés and Graham (see [3] and [4]) asked the following questions:

1. Is it true that

k
-1

max{zy : {z1,.., 21} € X} ~ ?

Trivially, we have that it is less than or equal to (1+ o(1))k/(e — 1), so all
one needs to show is an lower bound of size (14 o(1))k/(e — 1).

2. Is it true that
min{zg — 21 : {z1,.., 26} € X} ~ k7

(Note: These two questions were misstated in [3].)
In this paper we will prove the following theorem, which solves these

questions of Erdos and Graham for infinitely many k.

1991 Mathematics Subject Classification. 11P99.
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Main Theorem. Suppose thatr > 0 is any given rational number. Then,

for all N > 1, there exist integers xq, ..., xg, with

loglog N
log N

such that

Moreover, the error term O,(loglog N/log N) is best possible.

We will now discuss the idea of the proof of the Main Theorem. Let

¢ > 1 be the smallest real number where

r < Z

N<n<cN

1
< —.
_r—l_cN

S|

Using the fact that >, ., 1/n = logt +~ + O(1/t) one can show that
c=¢€"+ 0.(1/N). Now suppose

1
v_ Z —, where ged(u,v) = 1. (1.1)
v N<n<cN "

If we had that u/v = r, then we would have proved our theorem for this
instance of r and N, because ¢ = " + O,(1/N) is well within the error of
O.(loglog N/log N) claimed by our theorem. Unfortunately, for large N
it will not be the case that u/v =r.

To prove the theorem, we first will use a proposition which says that

we can remove terms from the sum in (1.1), call them 1/dy,1/ds,...,1/d;,
so that if

u' 1 1 1 1 1 b
?:;_{d_l—l_a—l_‘”—l_d_l}: Z g,whelegcd(u,v)_l,

then all the prime power factors of v’ are < N1/5; moreover, we will have

loglog N < 1 . 1 P 1 < loglog N
10gN " dl d2 dl " 10gN ’

We will then couple this with another proposition which says that if s is

some rational number whose denominator has all its prime power factors

o oarl/A—e 1 oA . a1 11T 1T AT AL a1 a1
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are integers M < ny < ng < -+ < ng < TS T where v(e) is some

constant depending on €, such that

so that
loglog M log log M
log M ) " logM
Now, all the prime power factors of the denominator of s will be < N1/°

(when N is sufficiently large). Thus, the hypotheses of this second propo-

sition are met with e = 1/20, and so there exist ny,...,ng such that
k
u’ 1 1
r=stS= ) S+ ) e
N<n<cN 1=1

All the denominators of these unit fractions will be no larger than

e((20)+o(1))spr — (v(20)+o()stryr — (o7 4 0, loglog N N,
log N

and will all be greater than N.

The way we will prove that the error term O, (loglog N/log N) is best
possible is by showing that if

1 1 .
r=—+--+—, 2<2; <--- <z} are integers,
1 Tk

then none of the z;’s can be divisible by a prime p > x/log x (this idea
appears in [2], [3], and [6]). It will turn out that this forces

T . (1 N (r+ 0(1))10g10g$k> ’

— >e€
T log =,

+hai1a Priabhiva +ha et ~AF +h4a Mair THarrare
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II. SMOOTH NUMBERS

In order to even state, let alone prove, the propositions and lemmas
needed to prove the Main Theorem, we will need to introduce some nota-
tion and definitions concerning smooth numbers. We say that a number
n is y-smooth if all of its prime factors are less than or equal to y, and we

define the usual smooth number counting function as follows.
B(N.y) = #n < N : nis y-smooth}
=#{n <N : pln, pprime = p <y}.
Define

S(N,y) :== {n < N : pIn, p prime = p* < y},

and let
V'(N,y) =|S(N,y)l,

the number of elements in S(N,y).
In later sections we will need various estimates concerning the ¢'(N,y)

and ¥ (N, y) functions, and we will use the following lemma to obtain them.

Lemma 1 (N.G. de Bruijn). For any fized ¢ < 3/5, uniformly in the
range

y>2, 1<u<exp{(logy)**~},

we have

S(0) = Vol {1+ 0 (EEIN

logy

where u = log N/logy and p(u) is the unique continuous solution to the

differential-difference equation
{ plu)=1, f0<u<l
up'(u) = —plu—1) if u> 1.
(For a proof of this lemma, see [1].) We can deduce the same estimate for

the function ¢'(N,y) by using the following lemma.

1 log L
> -o(®R).
mp* VY

p* >y, a>2

Lemma 2.
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Proof.
1 = 1 1 log L
Y oLy ey Lemey Lot
mp®<L n>\/y j=2 m<L n>\/y
P>y, a>2
p prime
From these last two lemmas we deduce that
1 Nlog N
¢/(N7y):¢(Nay)_O N Z @ :@ZJ(N,y)—O(ig)
oy P VY
mp® <
p* 2y, a>2
p prime

(2.1)
Combining this with the previous two lemmas, we have the following final

result of this section.

Lemma 3. If c,u <1 and N >., 1, then
1

1

N<n<eN
n€S(N,N1/u)

Proof. From Lemma 1, Lemma 2, and (2.1) we have the following chain

of equalities.

1 1 N, Ny —o/(N, N/
Z L Z y _O<w< )N¢( ))

N<<n<eN n N<n<eN
nGS(N,Nl/u) n is N1/ % _smooth
> o X > .
n mp
N<n<ecN Nl/u<p<(cN)1/u N/p<m<cN/p
n is n1/%_smooth p prime

log(cN)
Y <N1/(2u)>
B 1 m((eN)/*)  log(cN)
—,o(u)logc—l-0<logN + N1/u + N1/(2u)

1
= p(u)logc+ O, <@> .

ITII. PROOF OF THE MAIN THEOREM

To prove the Main Theorem we will require the following two proposi-

P A e I T T T T S (L S T (N S T S A
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Proposition 1. Let ¢ > 1. Then, for all N sufficiently large, there exist
integers dy, ..., dp with N < dy <dy <---<d; <eN, such that of

I _ > % (3.1)

then all the prime power factors of g are < N/, and

loglogN 1 1 1 loglogN
BB et 28
log N

—_ 2
log N dl d2 dl (3 )

Proposition 2. Suppose 0 < € < 1/8 and A and B are positive integers,
where ged(A, B) = 1, all the prime power divisors of B are < MY4=¢ and
logloglog M/log M <« A/B < 1. Select ¢(M) > 0 so that

2

A < Z 1 < 2A . 1
B = n BT (MM
n€S(c(M)M, M1/ 4—¢)

Then, for all M sufficiently large, there exist integers ny,...,ng with M <
ny <ng < - <ng < c(M)M, each n; € S(c(M)M, M=), and

Remark: From Lemma 8§ we deduce that ¢(M) < eV (DA/B yhere v(e) s
some function depending only on €. By using a “short interval” version
of Lemma 1, one can prove a stronger version of Lemma 2, and possibly

a stronger version of Proposition 2, which would work for all A/B with

1/10g"t* N « A/B < 1, for any € > 0.

Using these propositions we will now prove the Main Theorem. Let M

be the least integer where
7 E r 4 . .
o n

Using the fact that >, ., .. 1/n =logz + v+ O(1/xz), it is easy to see
that M/N = emtO0/N),
Now, from Proposition 1, we have that for N sufficiently large, there

exist integers dy, ..., d; with

AT . 1 .1 3 g 4+ O(1/N) AT
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such that if

U 1
- = E — gcd(u,v) = 17
v n

N<n<M

ndy,... d

then all the prime power factors of v are < N'/°. Also, from (3.2) and
(3.3) we have that if we let A/B =r — u/v, where gcd(A, B) = 1, then

loglog N A loglog N
0808 4 08108
log N B log N

We observe that once N is large enough, all the prime power factors of B
will be < N'/5. We conclude from Proposition 2 with e = 1/20 that there

exist integers ny,...,ng with
M<ng < <ng<e’1/204/Byr

where v(1/20) is some constant, and such that

A—l—l- -I-l
B ng

Thus, we have the following representation for r:

u A 1
r=-—4 == g -l +—+—=++—
v B n ny  ng ng
N<n<M
n#dy,...d

where

ng < e?(/20A/Byr — )14 0 loglﬂ M
log M

loglog N
=<e" r | ——— ) ¢ N.
=)

This proves the first part of the Main Theorem.

To see that the O,(loglog N/log N) error term is best possible, suppose
that

r:—:——l—---—l—i, where ged(U, V) = 1.
V Th

Let Z = max{z; : ¢ = 1,...,k}. We claim that the largest prime p
dividing the z;’s satisfies p < Z(1 + 0,(1))/log Z. To see this, fix a prime

p and suppose
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are all the z;’s divisible by p. We have two cases to consider: case 1 is if
p|V, and case 2 is when pt V.

If we are in case 1, where p|V, then certainly p < V, and so p <
Z(1+4 o0(1))/log Z, for k sufficiently large (or N sufficiently large). If we
are in case 2, where p 1 V| then we must have that p 1Y either, where YV
is given by

W 1 1 1 1 1
_:__|_..._|__:_<__|_..._|__>7 gcd(W,Y)Zl.
Y T Ty p m

Thus, p divides

1 1
lem{m,...,m} {m— 4ot E}
1

1 1 1
<lem{2,3,...,m}ql+ -+ -+ +—
2 3 my

— €m1(1+0(1))’
and so p < ™42 From this we deduce that
Z > pmy > plogp(1 + o(1));

or in other words,

p < (1 +0(1)).

log Z
Making use of this bound on p we have that
k
1 1
-\ < -
r=). < 2. .

j=1"J N<n<eN
pln=>p<cN(1+40(1))/ log(cN)

Z 1 Z 1

N n mp

N<n<cN N<mp<eN
p>eN(140(1))/ log(eN)

The first of this last pair of sums can be estimated using the well-known

estimate } . 1/n =logz/y+ O(1/z), which gives
1 1
| — ). .
> -tmeroy) (35)
N<n<cN

To estimate the second of the last pair of sums in (3.4), we will need the

T 1T  * 1 I A L . Y R T Y (T T
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Lemma 4. For ¢ > 1 and a > 0 we have

P D Y-

N<mp®<cN N<mp<cN

p@>N/log® N, p prime p>N/log® N, p prime
_ a(log ¢)(loglog N) Lo, 1 .
log N log N
Combining this lemma with (3.4) and (3.5), we have
log log N
r <loge— (loge+ 0(1))%.

Solving for ¢ we find that

¢ er <1 N (r—l—o(l))loglogN) ‘
log N

We will now prove Lemma 4.
Proof. Using the fact that } 3, ., 1/7 = logn + v + O(1/n), together
with the estimate

Z L = loglogn + k + o(1/logn),
p(l

p2<n
p prime

where k is some constant, we have the following chain of inequalities:

) S D

a
N<mp?®<eN p N/log* N<p*<cN N/p*<m<cN/p®

p®>N/log® N, p prime
1 <CN>
= Z — log a
p p

N/log® N<p*<cN

()0 (5)]
-y a{logc—|-0<p—>}

N/log* N<p*<cN

=loge Y. %+0<F(JCVN)>

N/log® N<pe<cN p

=]

| =

S
=

T e N
¢ log N “\log N

_ a(log ¢)(loglog N) Lo 1
log N ‘“\logN /)’

as claimed. The proof for the sum over primes p, instead of prime powers

a

" e Aavantlir Fha aatha
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IV. PROOF OF PROPOSITION 1

Let p1 < py < --- < pp be all the primes in [N'/3, N/log'® N). Define

S = (N, eN) N Z,
Sh+1 = S\ ({mp . p prime, p > N/log'® N}

U%w“:pmm&aZQJﬂzN”ﬂ)

and let

1
Uht1 _ Z —,where ged(up41,vp41) = 1.
n

v
ht1 neESy 41

Notice that vp41 has no prime divisor > N/ log10 N; moreover, vj4+1 has
no prime power factors > N/ log'® N, for N sufficiently large, since the
only prime power divisors of elements of S that are > N'/® are primes.

We also have that

ooy mip+o 3 m;a. (4.1)

n
n€S\Sh41 NSmPSICON mp<cN
p>N/log!Y N pZNl/E), a22
p prime

The first of these last two sums can be estimated using Lemma 4, which

gives

Z 1 (10logc+ o(1))loglog N
mp® log N ’

N<mp<cN
p>N/ loglON

and the second of the last two sums can be estimated using Lemma 2,

1 log(eN)
Y =0 )
—~ mp® N1/10
mp® <c

p>N'? a>2
p prime

which gives

Combining the last two displayed equations with (4.1), we deduce that

Z 1 (10loge+ o(1))loglog N
log N '

nES\Sh+1

Starting with the prime p;, we will successively construct subsets of

Sh+1,
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where if
v; n’
neSs;

ged(ui,vi) = 1, then all the prime factors of v; are smaller than p;, for all

1 = 1,2, .., h; moreover, we will construct these sets in such a way that

1 1
Z — << ﬁ, fOI' Z = 1,2, ,h
n€S;11\S: " pilog

If we can accomplish this, then if we let {dy,...,d;} = S\ S, we will have

L R T S 1+’§ S 1
di  dy d n 4 n
nES\Sh+1 J=2 nESj\Sj—l
h
1 1
_ oy liofy L
n€S\Sh 41 " J=1 Pj 10gN
loglog N
log N
and
1 1 1 1 (10logc + o(1))loglog N
44> Z = :
tottaz X log N
nES\Sh+1

where all of the prime factors of vy are smaller than N'/%; moreover, all
the prime power factors of v; will be smaller than N'/?_ since the only
prime powers > N'/% that can divide elements of S are primes. Thus,
(3.1) will be satisfied, and so if we can construct these sets S;, Proposition
1 will be proved.

Suppose, for proof by induction, we have constructed the sets S; where
2 <1 < j < h+1. Then, all the prime factors of v; are < p;_1. If p;_1 {v;,
we just let S;_1 := 9;, and then all the prime factors of v;_; are smaller
than p;_q.

If pi—1|v;, then p;_q||v;, since the only prime power factors of elements

e 1 s~ aTl/B e xxT e 11 TN e e
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S;—1 as follows: Using Bertrand’s Postulate, let ¢ be the smallest prime in

[log N,2log N], and set M = N/(gpi_1) > (log” N)/2. Let
B =lem{n < M'?} > lem{n < (log N)*/° /21/5Y > 2ep; 1 M

(which will be true for M sufficiently large), and let A be the largest integer
< ¢'B/2 where

’ 1_ 1
¢ = Z - = p(b)logec+ O gl )

M<n<leM
n€S(cM,M1/5)

(which follows from Lemma 3) and
A = qBu;(vi/pi—1)”"  (mod pi_1).

(note: p;_1]||vi) Since B > 2¢p;—1 M, and since A € [¢/'B/2 — p;_1,c'B/2],

we have that
2 ot im A ]
B-°S°BT B B M

for N is sufficiently large. From Proposition 2, there exists nq, ..., ng, with

M <ny <ng <---<ng < cM where each n; € S(eM, 1\41/5) and

Now, we claim that we can let
Si-1 = Si\Ty,

where

T; = {gpi—in;, 1 <j <k}

Notice that the elements of T; all lie in [N, ¢N], and have largest prime
divisor equal to p;_1, which is their only prime power divisor > N1/3.
Thus, T; C Sp41. Also, T;NT; = 0, if i # j, since the largest prime

divisors of elements of T; and 7} are p;—; and p;_1, respectively. Thus,

T.NS;, =T;N (Sh—i—l \ (Th—|—1 J---u Ti_|_1)) =T; N Spy1 = T;

1T 1T 1 mMm — Y S T - YN
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If we let S;—; be defined in this way, then, since p;_1|v;, we have

Ui—1 Uy A qBu; — Avi/pi 1

vi1 v gpiciB v;qB

Thus,

viqBu;—1 = vi_1 (¢Bu; — Avi/pi—1),

Since qBu; — Av;/pi—1 =0 = v; (mod p;_1), and since ged(u;—1,vi—1) =
1, we must have that v;_i|v;¢B/pi—1. Now v;/pi—1 is not divisible by
pi—1, since, as we mentioned earlier, p;_1||v;, and so v;/p;—1 has all its
prime power divisors < p;_1; also, ¢B is not divisible by p;_1, since
B =lem{2,3,..., M5}, and M'/5 is less than N'/®> < p;_y, and since
qg < M. So, all the the prime divisors of v;_; are < p;_;. We also have
that

1 1 log ¢ 1
Yoo Y et .
n€Si\Si—1 " M<n<cM qpi—1n Pi-14 Pi—1 log

and so 5;_1 satisfies all the requisite properties. We conclude that all the

sets S;, 7 =1,...,h + 1, can be constructed, and so Proposition 1 follows.

V. PROOF OF PROPOSITION 2

Let
P o= lem(1,2,3,..., [M/A7]) = M1 (o),

where this last equality follows from the Prime Number Theorem. Let
M<y <y < <y < c(M)M be all the divisors of P lying in
[M, ¢(M)M]; that is, all the integers in S(c(M)M, M'/*~¢) in the interval
[M,c(M)M]. If Y|P, we have the following identity.

P/2—1

| Xh 1, ifY|X
P 2 e(?) - {o, ifY | X,

h=—P/2

where e(u) = €™, Thus, if B|P, one can deduce that

#{{nl, vy} CHy1, ., ye b,k variable @ 1/ny 4+ -4 1/ng = A/B}

. P/2-1

Y e (M)
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(The reason for subtracting 2 in the above equation is that when A/B =1,

the exponential sum also counts the extraneous representations 1/n;+-- -+
1/ng =0 and 2.)
Let

F(h) = :{H(yi)}

j
hfl 1 ’
=e|l=q—+ -+ — 20| | cos(mh/y;
(G{-++2}) Lot/

Upon substituting this into our equation above this gives

#{{nl, vy} CHYy1, ., ye b,k variable @ 1/ny 4+ -4 1/ng = A/B}

L P
> 5 Y e(—An/B)F(h) | —2.
h=—P/2
(5.2)
We will now try to find a lower bound for (5.2). To do this we will show
that
275
|F(h)| < 2P’ for M/2 < |h| < P/2, (5.3)
and that
Y e(~Ah/B)F(h) + e(Ah/B)F(~h) > 0, (5.4)
1<h<M/2

from which we deduce
Y e(=Ah/B)F(h) > 2",
0<[|R|<M /2

From this, (5.2), and (5.3), it then follows that

#{{nl,...,nk}g{yl,...,yt}, k variable : l/nl—l—---—l—l/nk:A/B}

i—1

P

> — 9= pt-OMT),

which is exponential in ¢ since

A Mlogloglog M
b N2 Mlogloglog M
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To establish (5.4), we first observe from (5.1) that

Arg{e(—Ah/B)F(h)} = _QZAh +h {i P i}

Y1 Yt
i (5.5)
+ Arg H cos(mh/y;)
=1

Using the fact that

1 1 A

— 4+ — =2—= 4+,

Y1 Yt B
where

0<6< 1
- T (MM’

together with the fact that each y; is > M, we have

—27w Ah 1 1 wlh| o«
h — 4 -+ — | =nd|h < — 5.6
‘ B 7 {y1+ +yt}‘ <5 <5 (56)
whenever
M
n| < 2=
2

Also for such h, we observe that
cos(mh/y;) > cos(w/2) =0, for j =1,2,...,¢,

since y; > M for all j. Hence,

4

Arg H s(mh/y;) ¢ = 0.

Using this, together with (5.5) and (5.6), we find that

|Arg{e(—Ah/B)F(h)}| < 5, whenever |h| < g

Thus, for such 2 we have
e(—Ah/B)F(h) + ¢(Ah/B)F(—h) > 0,

and so (5.4) follows.

In order to establish (5.3), we will need the following lemma, which will

1T TT* 99Ty g rYY
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Lemma 5. Suppose 0 < e < 1/8. Lety; < ys < -+ < y; be all the integers
in [M,(1 + 1/log M)M] where each y; € S((1 4 1/log M)M, M'/*=¢).
Then for M sufficiently large and h real, either

1. There are > M3/* y;’s which do not divide any integer in I :=
(h — M3/* h 4 M3/%), or
2. There 1s an integer in this interval which s divisible by P :=lcm

{p® < MY4=¢ . p prime}.

From this lemma, it follows that if

M
5 < IhI < P2,

and if
. ¢
Z(cr) = #{i =Lt = /yill > s}

where ||u|| denote the distance to the nearest integer from u, then for some

constants ¢y, ¢y > 0 we will have for all M sufficiently large,
Z(c1) > ea M4,

For these integers y; counted by Z(c;), we will have that

|cos (wh/y;)| = |eos (|lwh/y;l])|
< |cos (7701/1\41/4>‘

1 7%c} 1
—1- T vo(y):

From this and (5.1) it follows that for such h

1 72¢? 1 Z(ea)
t 4 1 L
()| < 2 <1 zﬂguz+*9<ﬂ4>>

i
cperatnin o (2)

P

This establishes (5.3) and thus proves the proposition.

VI. PROOF OF LEMMA 5
For each integer n satisfying

M3 *1og® M < n < 2M3/*1og® M, and n e S(2M3/*log® M, M/4=¢),

o1\
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define

M(n) = {y; : y; = ng, where w(q) <3.}

We claim that lem M (n) = P for all such n. We will show below that the

truth of this claim implies that either:

A. There is an n satisfying (6.1) such that every integer of M(n) divides
a single integer in I, which together with the assumption lem M(n) = P,

gives us case 2 in the claim of our lemma, or

B. For each n satisfying (6.1), there is an integer yq(,) € M(n) which
does not divide any integer in (h — M3/* h 4+ M3/*).

We will assume that case B is true and show that it implies case 1 in the
claim of our lemma (and thus if we can show that lem M(n) = P and that
either A or B is true, we may conclude that either case 1 or case 2 in our

lemma is true):

The first thing to notice is that from (2.1) we know there are at least
ccM3/*log® M integers n satisfying (6.1). If all of the Ya(n)'s as indi-
cated in case B were distinct, then we would have that there are at least
ce M3/ * log® M y;’s not dividing any integer in (h—M?3/* h4-M3/*), which
is the first possibility claimed by our lemma; however, it is not necessarily
the case that the y,(n)’s are distinct. To overcome this difficulty, we will
now show that no y; can lie in too many of the sets M(n): Let

D(M) := max #{n : n satisfies (6.1) and y; € JW(n)}

Yi
<max #{q : qlyi, w(g) <3}

=o0 (10g3 JW) .
From this we have that

#{ya(n) . n satisfies (6.1)}

- W(2M3/ 4 log® M, MY/A=¢) — b(M3/* log® M, M /*=¢)

M3/
= D(.M) > 1

Thus, there are > M?3/* y;’s which do not divide any integer in (h —

ar2/4 1 . a42/4N 0 1+ 144 e a4
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We now will show that if lem M(n) = P for all n satisfying (6.1), then
either case A or case B above must be true. So, let us assume then that
lem M(n) = P for all n satisfying (6.1). If case B is true, then we are
done. So, let us assume that case B is false. Then, we must have that
there is an n satisfying (6.1) such that each member of M(n) divides an
integer in I. Since each such member is divisible by n > M3/*1log® M,
which is greater than the length of I, we must have that all such members

divide the same integer in I. Thus, case A is true.

To finish the proof of our lemma, we now show that lem M(n) = P for
all n satisfying (6.1). Fix an n satisfying (6.1) and let p® < M'/4~=¢ be
the largest power of the prime p that is < M'/4=¢. Let p® be the exact

power of p which divides n. Thus, e < a. We will show there exists an

€ M(n) with
y; = np®~ “lily, where [y and [, are primes with ged(l1l2,n) = 1,

which will imply that y; is divisible by p*, and thus p*|lem M(n). Such

an y; exists if we can just find primes /1, < M'/*=¢ which satisfy

M 1 M
<l ) 1 d (I41: =1. (6.2
npt—¢ 1<hs \/< * 10g1\4> npt—e’ ged (Ll n) (6.2)

To see that it 1s possible to find /1 and [, we first observe that the lower

limit of the interval in

M M M
pre (M3/41og® M)MY/4=¢  10g%/? M’

and the length of the interval is the multiple \/1 + 1/log M —1 > 1/log M

of this lower limit. From the Prime Number Theorem, there are >

1\46/2/(610g7/2 M) primes in this interval, and so for M sufficiently large
there must be two of them I; < I, which do not divide n < 2M3/4 log3 M.
These two primes therefore satisfy (6.2). To see that I;,lz < MUY4=¢ we

observe that the upper limit of the interval in (6.2) satisfies

1+ 1 M /2 ﬂf 2M
log M np“_e M3/410g® M

1/8
=Y M_ < MY

9 /9
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for M sufficiently large and 0 < ¢ < 1/8. Thus, we can find /; and [y as
claimed, and so our lemma is proved.
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