

Homework 4, Analytic Methods in Number Theory

February 21, 2007

1. In this problem you will use the Poisson summation formula to give an analytic proof of a certain algebraic expression called a “Gauss sum”: Fix an odd integer q , and consider

$$G := \sum_{n=0}^{q-1} e^{2\pi i n^2/q}.$$

In this homework you will give a proof that

$$G = \begin{cases} \sqrt{p}, & \text{if } q \equiv 1 \pmod{4}; \\ i\sqrt{p}, & \text{if } q \equiv 3 \pmod{4}. \end{cases}$$

First, we recall that the Poisson summation formula says that

$$\sum'_{A \leq n \leq B} f(n) = \sum_{n=-\infty}^{\infty} \int_A^B f(t) e^{2\pi i nt} dt.$$

where Σ' indicates that the terms $n = A$ and $n = B$ each get contribution $f(A)/2$ and $f(B)/2$, respectively – all other terms are correct.

Step 1. First, explain why

$$G = \sum'_{0 \leq n \leq q} e^{2\pi i n^2/q}$$

So, here we are taking $A = 0$ and $B = q$.

Step 2. Verify the identity

$$G = q \sum_{n=-\infty}^{\infty} e^{-\pi i q n^2/2} \int_{n/2}^{n/2+1} e^{2\pi i q y^2} dy.$$

Step 3. In the previous step observe that $e^{-\pi i q n^2/2}$ is 1 if n is even, and is i^{-q} if n is odd. So, if you divide the series into n even and odd, you can show that

$$G = q(1 + i^{-q}) \int_{-\infty}^{\infty} e^{2\pi i q y^2} dy.$$

Show that this is the case. There is an issue here about the convergence of this integral – show that as long as $Y, Z \rightarrow \infty$,

$$\int_{-Y}^Z e^{2\pi i q y^2} dy \rightarrow \int_{-\infty}^{\infty} e^{2\pi i q y^2} dy.$$

Step 4. Upon setting $y = q^{-1/2}u$, show that

$$G = (1 + i^{-q})Cq^{1/2},$$

where C is a certain integral. Then, plugging in $q = 1$, show that $C = (1 + i^{-1})^{-1}$, and deduce

$$G = \frac{1 + i^{-q}}{1 + i^{-1}} \sqrt{q} = \begin{cases} \sqrt{q}, & \text{if } q \equiv 1 \pmod{4}; \\ i\sqrt{q}, & \text{if } q \equiv 3 \pmod{4}, \end{cases}$$

whence our formula for G stated earlier.

2. In this problem you will use contour integration to find the exact value of

$$S := \sum_{n=-\infty}^{\infty} \frac{1}{n^2 + 1}.$$

Step 1. First, realize that the residue at s equal to an integer n of $\pi \cot(\pi s)$ is 1; and, from this deduce, explain how

$$\frac{1}{2\pi i} \int_B \frac{\pi \cot(\pi s)}{s^2 + 1} ds$$

is related to S , where B is a certain box whose corners are given by

$$-(T + 1/2) + iT, \quad -(T + 1/2) - iT, \quad (T + 1/2) + iT, \quad (T + 1/2) - iT,$$

where T is a large positive integer. To answer this problem, keep in mind that $(1 + s^2)^{-1}$ has simple poles at $s = \pm i$.

Step 2. Explain why as $T \rightarrow \infty$, the integral around the box is 0. From this observation, and from Cauchy residue formula, express S in terms of the residues at $s = \pm i$ of $\pi(1 + s^2)^{-1} \cot(\pi z)$.