

# Homework 6, Analytic Methods in Number Theory

March 29, 2007

In this problem you will prove the Brun-Titchmarsh theorem using the Large Sieve of Montgomery and Vaughan. Let us recall what this version of the large sieve says: Suppose that

$$S \subseteq \{M+1, \dots, M+N\},$$

such that for each prime  $p \leq Q$  we have that  $S$  fails to occupy

$$0 \leq \omega(p) \leq p$$

residue classes mod  $p$ . Then,

$$|S| \leq \frac{N + 3Q^2}{\sum_{\substack{r \leq Q \\ r \text{ square-free}}} \prod_{p|r} \frac{\omega(p)}{p - \omega(p)}}.$$

(There are better versions of the large sieve known, but this version is good enough for our purposes.) Throughout the proof we will use

$$Q = \delta\sqrt{N},$$

where  $\delta > 0$  will depend on a parameter  $\epsilon > 0$  stated later; so, we will be using

$$|S| < \frac{(1 + \delta)N}{\sum_{\substack{r \leq Q \\ r \text{ square-free}}} \prod_{p|r} \frac{\omega(p)}{p - \omega(p)}}.$$

Later, there will be a factor  $(1 + 2\delta)$  in the numerator – this new factor is not a mistake!

The Brun-Titchmarsh theorem, at least the version you will prove, says

**Brun-Titchmarsh Theorem.** For  $\epsilon > 0$  and  $k \geq k_0(\epsilon)$ , if  $x \geq 0$  and  $q \geq 2$ , then

$$\pi(x + kq; a, q) - \pi(x; a, q) \leq (2 + \epsilon)\pi(k) \frac{q}{\phi(q)}.$$

(This is slightly different from the version I stated in class. This version is easier for the purposes of a nice homework problem.)

Here, we use the notation

$$\pi(x; a, q) = |\{p \leq x, p \equiv a \pmod{q} : p \text{ is prime}\}|.$$

**Step 1.** First, identify each prime number  $P \in (x, x + kq]$  satisfying

$$P = x + nq$$

with the number  $n$ . Note that this gives us a subset  $S$  of  $\{1, \dots, k\}$  consisting of these values of  $n$ . Now, for each prime  $p \leq Q$  such that  $p$  does not divide  $q$ , explain why there is a certain residue class mod  $p$  that contains at most one element of  $S$ .

**Step 2.** For each prime  $p \leq Q$ , remove from  $S$  those elements that lie in the single special residue class you found in step 1. Call the new set  $S'$ . Note that  $|S'| = |S| - O(Q/\log Q)$ .

**\*\*Step 3.** You can skip this step if you are not up to it: Prove the estimate

$$\sum_{\substack{r \leq R, \gcd(r, q) = 1 \\ r \text{ square-free}}} \frac{1}{\varphi(r)} \sim \frac{\varphi(q)}{q} \log R.$$

One way to prove this cheaply is to use the estimate

$$\sum_{\substack{r \leq R \\ r \text{ square-free}}} \frac{1}{\varphi(r)} \sim \log R,$$

and then some inclusion-exclusion.

**Step 4.** From steps 2 and 3, and the Large Sieve, conclude that for any fixed  $\delta > 0$  (remember,  $Q = \delta\sqrt{k}$ ) if  $k$  is sufficiently large

$$|S'| \leq \frac{(1+2\delta)k}{\frac{\varphi(q)}{q} \log k} = (1+2\delta) \frac{q}{\varphi(q)} \frac{k}{\log k}.$$

**Step 5.** Put together all the above steps, and conclude that the Brun-Titchmarsh theorem is true.