ON NON-INTERSECTING ARITHMETIC PROGRESSIONS

ErNEsT S. CrOOT III

ABSTRACT. Let L(c,z) = ecVIegTloglog®  We prove that if a; (mod q1),...,a
(mod gj) are a maximal collection of non-intersecting arithmetic progressions, with
2<q1 <q2 < <gqg <z, then
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In the case for when the ¢;’s are square-free, we obtain the improved upper bound
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I. INTRODUCTION

Suppose that a1 (mod ¢1),a2 (mod ¢2),...,ar (mod gi) is a collection of arith-
metic progressions, where 2 < ¢y < -+ < g < z, with the property that

{ai (mod g¢;)} N {a; (modg;)} = 0, ifi#j.

We say that such a collection of arithmetic progressions is disjoint or non-intersecting.
Let f(z) be the maximum value for k, maximized over all choices of progressions

a; (mod ¢;). Define

L(c,z) = exp(cy/logzloglogz),
and define
P(r,y) = #{n <y : pprime, pln = p <y}, and
P (z,y) = #{n <y : pprime, p*ln = p* <y}.
In [3], Erdés and Szemerédi prove that
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exp ((log:z;)l/z"'e) < fl@) < m7

for some constant ¢ > 0. (This result is also mentioned in [2]. ) Their lower bound
can be refined by using more exact estimates for ¢)(z, L(c¢,z)) than was used in their
paper. Specifically, as direct consequence of [Lemma 3.1, 1], we have the following
estimate
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Lemma 1. For any constant ¢ > 0,

U Liew) = 7

z

(1/(2¢) + o(1),2)°

We also have the same estimate for ¢*(z, L(c, x)), since

Y(x,L(c,x)) > " (x,L(c,x)) > (x, L{c,z)) — Z W(xz/n?, L(c,z))

n2>L(c,z)

= ¢($7L(C7$)) -0 <L(c/2—|— 1/(20) —|—0(1),:E)> 7

Now, let p be the largest prime number less than or equal L(1/v/2, z). Let q1,q2, ..., qi
be the collection of all integers < = which are divisible by p, and whose prime power
factors are all < p. From (1) and (2), we have that t = z/ (pL(l/\/§—|— 0(1),3:)) =
z/L(v/2 4+ o(1),z). For each ¢; = pﬁ,’f”ﬁ,’f”__ll ---K?l, where p > (fr > Ef:l > >
Ki” are the powers of the disctint primes dividing ¢;, we choose the residue class a;
(mod ¢;) using the Chinese Remainder Theorem as follows:

(2)

hj_ h; .
a; = " (mod p); a; = ij_ll (mod £;7), for 2 < j <r;
and finally, a; = 0 (mod E?l).
This is exactly the construction which appears in [3] (except that their progressions

were all square-free), and it is easy to see that our choice of progressions a; (mod g¢;)
are disjoint. Thus, we have that

(V2+o(1),2)

In this paper we will prove the following results:

fla) >

Theorem 1. Ifa; (mod ¢1),...,ar (mod gi) are a collection of disjoint arithmetic
progressions, where the q;’s are square-free and 2 < q; < --- < qr < x, then

X

(1/2=o(1),2)
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Corollary to Theorem 1.

X

1) < 76— o) o)

Thus, we will have shown that

T Z

Ivatons < W < TaE—em,a)

To see how the Corollary follows from Theorem 1, let by (mod r1),...,bp) (mod rp(,))
be a maximal collection of disjoint arithmetic progressions with 2 < ry < --- <
() < . Suppose, for proof by contradicition, that for some ¢ < 1/6

x
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Write each r; = «;03;, where 3; is square-free, ged(ay, 3;) = 1, and every prime
dividing «; divides to a power > 2. (Note: we may have «; or 8; = 1.) Now, at
least half of ;s must be < L(1/3, z), for if not we would have from our assumption

(3) that

X

2L(1/6 — €, x)

< f@)/2 <##{ri + a;i>L(1/3,2)}

<z Y n—12 11 <1+%+%+--->

n?>L(1/3,z) p prime p p

X
< I(1/6,2)

which is impossible for z large enough in terms of . Thus, we must have that there
exists an o < L(1/3, z) for which at least f(z)/(2L(1/3,x)) of the r;’s have a; = a.
Let R(a) C {ri,...,7f(z)} be such a collection of r;’s, where

f(z) z

| R(a)| > 2L(1/3,z) > 2L(1/2 — e, z)’

where this last inequality follows from our assumption (3). Now there must exist a

residue class b (mod «) for which at least |R(a)|/« of the progressions b; (mod r;)
satisfy

ri € R(a), and b; =b (mod «). (4)

Thus, the arithmetic progressions b; (mod r;/«a), where r; satisfies (4), is a col-

lection of > |R(a)|/a > z/(aL(1/2 — €,z)) disjoint progressions, with distinct

square-free moduli < z/a. This contradicts Theorem 1 for z sufficiently large in

terms of e. We must conclude, therefore, that the bound in (3) is false for all e < 1/6
and = > zo(e€), and so the Corollary to Theorem 1 follows.

II. PROOF OF THEOREM 1

Before we prove Theorem 1, we will need the following lemma:

Lemma 2. There are at most x/L(c/2 + o(1),x) positive integers n < x such
that w(n) > c¢y/logz/loglogz. (Recall: w(n) = Ep|n » prime 1-); where ¢ is some
positive constant.

Proof of Lemma 2. We observe that

(Z p¢<e pl—a>j

p prime

J!

#{n<z : wn)>cylogz/loglogz} < z Z

. log =
Jj>e log log

z

" (ey/log o/ Tog log z) =+ (D)Viog a Togiog -
Z

- L(c/2 +0(1),2)’

We now resume the proof of Theorem 1. Consider the collection of all the ¢;’s

I T P T
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1
A w(4i) < 4/ ioglogs and

B. There exists a prime p > L(1, z), such that p|g;,
Let {ry,...,rr} be the collection of all such ¢;’s satisfying A and B, and where

{b(r1),...,b(rg )} are their corresponding residue classes.
To prove our theorem, we start with the set Sg = {rq,...,r1 }, and construct a
sequence of subsets Sy O S; O S O -+, and a sequence of primes py, pa, ... (and

let pg = 1), such that the for each ¢ > 1, the following three properties hold

1. Each member of S; is divisible by the primes pq, ..., p;,

2. There exists an integer A;, such that for each r; € S;, we have that b(r;) = A,
(mod p1pa - - pi).

3. S| > |Si—1l/(pin/log z/ loglog z).

We continue constructing these subsets until we reach a subset S; which has the
additional property:

4. There exists a prime p # p1, ..., pr, p > L(1, x) such that at least |S;|/+/log z/log log x
of the elements of Sy are divisible by p.

Let us suppose for the time being that we can construct these sets Sq,...,5¢ Ap-
plying Property 3 iteratively, together with Property 4, we have that the number
of elements of S; which are divisible by p (which are already divisible by p1ps - - py
by Property 1) is at least

|So| > |SO|
p1p2 - -pt(\/log z/loglog z )ttt = pip2 - peL(1/2 4 o(1), x)

?

(Note: By Property A above we have that ¢ < \/log z/loglog z since every element

of Sy has at most \/log z/loglog x prime factors.) From this, together with the
fact that p > L(1, z), we have

Z

pr-peLl(l, )

>#{n <z : ppipa---pe|nt > #{q¢ € S: : plq}

> |50 .
= pip2 - peL(1/2 4 0(1), z)

It follows that

IS0l < T2 = o), 2)’

From this, together with Lemmas 1 and 2 and the fact that the elements of Sy
satisfy A and B above, we have that

> |So| >k —#{n <z :w(n) > +/logz/loglogz}

—¢(z, L(1,2))

X

(1/2 = o(1),2)’

L(1/2 —o(1),z)

k_
S

and so
k < -

P VRN N Y
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which proves our theorem.

To construct our sets S;, we apply the following iterative procedure: suppose
we have constructed the sets 571,...,.9;, which satisfy 1 through 3 as above. To
construct S;y1, first pick any element r € S;. Now let ey, ..., e; be all those primes
dividing r/(p1 -+ p;) (note: j < y/logz/loglogz). Each element s € S;, s # r, is
divisible by at least one of these primes, since otherwise ged(r,s) = py---p; and
so we would have b(r) = A; = b(s) (mod ged(r, s)), which would mean that {b(r)
(mod r)} N {b(s) (mod s)} # 0.

Now, there must be at least |S;|/j > |Si|//log z/loglog = of the elements of S;
which are divisible by one of these primes ep. Let C; C S; be the collection of all
elements S; divisible by this prime e,. There exists at least one residue class B
(mod e,) for which more than |C;|/es > |Si|/(eny/logz/loglog z) of the elements
r € C; satisfy b(r) = B (mod ep). Now let S;11 be the collection of all such r € C;,
set pit1 = ep, and let A;11 = A; (mod p; ---p;) and A;4; = B (mod p;41) by the
Chinese Remainder Theorem. Then we will have that properties 1, 2. and 3 as
above follow immediately for this set S;41.

If there exists a prime p > L(1,z) which divides more than

Sit1]/+/log z/loglog  of the elements of S;11, then we set t = ¢ + 1 and we are
finished. If not, we continue constructing these sets S;. We are guaranteed to
eventually hit upon such a prime p since all our r;’s are divisible by at least one
prime p > L(1,z) by property B.
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