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1 Introduction

We know that not every n × n matrix A can be diagonalized. However, it
turns out that we can always put matrices A into something called Jordan

Canonical Form, which means that A can be written as

A = B−1











J1

J2

. . .

Jk











B,

where the Ji are certain block matrices of the form

Ji = [λ], or

[

λ 1
0 λ

]

, or





λ 1 0
0 λ 1
0 0 λ



 , or ...

Here, λ is an eigenvalue of A.

In this note we will only be concerned with how to compute the Jordan
blocks Ji, as well as how to apply it. Thus, we will not be concerned with
proving that there is always a Jordan decomposition.

2 Determining what the Ji blocks look like

Fix an eigenvalue λ. To determine the size of the Jordan blocks Ji that are
associated to λ, it turns out that all we need to know are the numbers

nullity(A − λI), nullity((A − λI)2), nullity((A − λI)3), ...
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Moreover, we have:

Key Facts.

• nullity(A−λI) is the number of Jordan blocks Ji associated to
λ.

• The differences nullity((A− λI)j)− nullity((A− λI)j−1) is the
number of Jordan blocks associated to λ that are of size at least
j × j.

These claims are easy to prove, so let us see why they hold.

2.1 On the nullity of A − λI

First, we note that if the block Ji is ni × ni, then one can easily check that

A − λI = B−1











J1 − λIn1
0 · · · 0

0 J2 − λIn2
· · · 0

...
...

. . .
...

0 0 · · · Jk − λInk











B.

It is easy to see that the jth power of this matrix is

(A − λI)j = B−1











(J1 − λIn1
)j 0 · · · 0

0 (J2 − λIn2
)j · · · 0

...
...

. . .
...

0 0 · · · (Jk − λInk
)j











B.

Since B is invertible, the rank (and nullity) of (A − λI)j is the same as
the rank (and nullity) of the matrix 1











(J1 − λIn1
)j 0 · · · 0

0 (J2 − λIn2
)j · · · 0

...
...

. . .
...

0 0 · · · (Jk − λInk
)j











1This follows from the fact that if U and V are both n × n matrices, such that U is
invertible, then rank(UV ) = rank(V U) = rank(V ).

2



Since the different blocks (Ji − λIni
)j lie in different rows and columns,

the rank (and nullity) of this block diagonal matrix equals the sum of the
ranks (and nullities) of the individual blocks.2

The only blocks that could possibly contribute to the nullity (when we
sum up the nullities of the (Ji − λIni

)j blocks) are those whose eigenvalues
equal λ, because otherwise (Ji − λIni

)j is an ni × ni upper triangular matrix
whose diagonal contains non-zero entries, making it intertible.

We now know that to compute our nullities, we only need to focus on
blocks corresponding to the same eigenvalue λ. So, let us assume that we
have reordered the Jordan blocks J1, ..., Jk so that the blocks corresponding
to λ are J1, ..., Jt. Then, a typical Ji − λIni

, i = 1, ..., t, might look like

[0], or

[

0 1
0 0

]

, or





0 1 0
0 0 1
0 0 0



 , or









0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0









, or ...

Let us denote this block by

Hi := Ji − λIni
.

We note that the nullity of this block Hi is 1 (its rank is ni−1), no matter
what ni happens to be. So, the sum of the nullities of H1, ..., Ht is t, which
therefore proves

The nullity of A−λI is the number t of Jordan blocks associated
to the eigenvalue λ.

2.2 On the nullity((A − λI)j) − nullity((A − λI)j−1)

So we know how many Jordan blocks there are, but we would like to also
determine their various sizes. In order to understand how to do this, we need
to understand what the various powers of the blocks Hi look like. Suppose
that the first through fourth powers of Hi are









0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0









,









0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0









,









0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0









,









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









.

2This is not completely obvious, but is not difficult to see if you work out a few examples.
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Once we have a 0 block, all higher powers will also be a zero 0. Thus, at
some point, all higher powers of Hi will be a zero block. In our example we
have that there are j rows that equal 0 if the power j is 1, 2, 3, or 4, and
there are four 0 rows for j = 5 or higher.

By studying this example, one should be convinced that the following is
true:

nullity(Hj
i ) =

{

j, if ni ≥ j;
ni, if ni < j.

So,

nullity(Hj
i ) − nullity(Hj−1

i ) =

{

1, if ni ≥ j;
0, if ni < j.

If we sum this up over all the blocks Hi, we get a sum of 1’s when ni ≥ j,
which means that:

nullity((A − λI)j) − nullity((A − λI)j−1) equals the number of
blocks of size at least j × j corresponding to the eigenvalue λ, as
claimed.

3 An example

Suppose that

A =









0 1 0 0
−3 4 0 0
2 −1 2 0
−1 1 1 2









.

What does the Jordan Canonical form look like (i.e. find the Jordan blocks)
?

First, we will need to compute the characteristic polynomial of A, to find
the eigenvalues. A routine calculation reveals that

det(A − λI) = (λ − 2)4.

So, λ = 2 is the only eigenvalue.
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There are lots of possibilities for the Jordan blocks, then, and here they
all are:









2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2









,









2 1 0 0
0 2 0 0
0 0 2 0
0 0 0 2









,









2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 2









,









2 1 0 0
0 2 0 0
0 0 2 1
0 0 0 2









,

and








2 1 0 0
0 2 1 0
0 0 2 1
0 0 0 2









.

In general, we have that

Claim. The number of possible sizes of the Jordan blocks of an n×n matrix
having a single eigenvalue λ is the number of integer partitions of n, denoted
by p(n). It turns out that

p(1) = 1

p(2) = 2

p(3) = 3

p(4) = 5

p(5) = 7

p(6) = 11

p(7) = 15

p(8) = 22

p(9) = 30

p(10) = 42.

In order to reduce the possibilities, we will need to first compute the
number of Jordan blocks by row reducing A − 2I: When we do this, we get

A − 2I =









−2 1 0 0
−3 2 1 0
2 −1 0 0
−1 1 1 0









→









−1 1 1 0
−3 2 1 0
2 −1 0 0
−2 1 0 0








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→









−1 1 1 0
0 −1 −2 0
0 1 2 0
0 −1 −2 0









→









−1 1 1 0
0 −1 −2 0
0 0 0 0
0 0 0 0









.

The nullity of this matrix is 2; and so, we know that we have two Jordan
blocks. Thus, we either have









2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 2









or









2 1 0 0
0 2 0 0
0 0 2 1
0 0 0 2









.

To determine which it is, we must compute the nullity of (A−2I)2: First,

(A − 2I)2 =









1 0 1 0
2 0 2 0
−1 0 −1 0
1 0 1 0









.

The nullity is clearly 3, because the first column is a basis for the column
space. Thus,

nullity((A − 2I)2) − nullity(A − 2I) = 3 − 2 = 1.

which means that there is exactly 1 matrix having size at least 2 × 2. Thus,

A = B−1









2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 2









B.

4 An application

Just knowing the general shape of the Jordan form is enough to prove some
very nice results – that is, in a lot of cases you don’t really need the matrix
B.

Here is one example. Suppose we have a sequence x0, x1, ... defined by
the recurrence relation

xn = c1xn−1 + · · · + ckxn−k.
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Of course since x
−1, x−2, ... are not defined, we need to define x0, ..., xk−1 to

be certain values, in order to compute terms of the sequence. This constitutes
some “initial conditions”. Now, with this in mind, just like with the Fibonacci
numbers we worked with earlier in the course, we will have that there is a
corresponding matrix equation, and in our case it is:















c1 c2 · · · ck−1 ck

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

























xn−1

xn−2

...
xn−k











=











xn

xn−1

...
xn−k+1











.

So, if we let M be this matrix, then we have that

Mn











xk−1

xk−2

...
x0











=











xk−1+n

xk−2+n

...
xn











.

Then, we have that:

xn is some linear combination of the entries of Mn.

It is easy to check that

Mn = B−1







Jn
1

Jn
2

. . . Jn
t






B,

where Ji is the ith Jordan block in the Jordan Canonical Form associated to
the matrix M .

It is a simple matter to check that the entries of Jn
i all are of the form

pi(n)λn, where pi(x) is a certain polynomial of degree at most ni−1. In fact,
far more is true: If the Jordan block Ji is

[λ], or

[

λ 1
0 λ

]

, or





λ 1 0
0 λ 1
0 0 λ



 , or ...
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then the nth powers of this block is

[λn], or

[

λn
(

n

1

)

λn−1

0 λn

]

, or





λn
(

n

1

)

λn−1
(

n

2

)

λn−2

0 λn
(

n

1

)

λn−1

0 0 λn



 , or ...

5 An example

Linear recurrence sequences abound, and turn up in the most unlikely of
contexts. One example is the sequence

x0 = 0, x1 = 1, x2 = 1 + 2, x3 = 1 + 2 + 3,

and in general
xn = 1 + 2 + · · ·+ n.

It has been known for a very long time that

xn =
n(n + 1)

2
.

If you didn’t know this, how would you prove it? For that matter, how would
you prove that 1k + · · · + nk is a certain (k + 1)st degree polynomial in n ?
Well, there are lots of ways to prove these things, but here I will explain how
to do it using Jordan Canonical Forms.

First, let us see that the above sequence is a linear recurrence sequence:
We have that

xn − xn−1 = n;

and so,
(xn − xn−1) − (xn−1 − xn−2) = n − (n − 1) = 1;

and continuing in this vein we find that

xn − 3xn−1 + 3xn−2 − xn−3 = 0.

In other words,
xn = 3xn−1 − 3xn−2 + xn−3.
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It follows, from what we worked out in the previous section, that





3 −3 1
0 1 0
0 0 1





n 



x2

x1

x0



 =





xn+2

xn+1

xn



 .

The characteristic polynomial of this matrix A (without the power n) is

f(λ) = (1 − λ)3.

So, λ = 1 is the only eigenvalue; moreover, one easily sees that A − I has
rank 2, meaning that the nullity is 1, and therefore the Jordan form involves
just one large 3 × 3 block. It follows that the entries of An are polynomials
of degree at most 2 in n; and therefore,

xn = g(n), where deg(g) ≤ 2.

Testing with a few small values of n, one finds that g(n) = n(n + 1)/2, as
claimed.
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