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In this note I write up two results we have seen in class, namely the basic
Large Sieve, and the method of Weyl differencing.

1 The Large Sieve

Suppose that
aM+1, aM+2, ..., aM+N

is a sequence of complex numbers. Define the exponential sum

S(α) =
M+N
∑

n=M+1

ane2πiαn = e2πiαN
N
∑

n=1

aM+ne2πiαn.

The basic Large Sieve is an inequality of the form

∑

1≤q≤Q

∑

1≤a≤q

(a,q)=1

|S(a/q)|2 < (N + 3Q2)

M+N
∑

n=M+1

|an|2.

This is not the best that is possible – in particular, the constant 3 here can
be improved. In this note we will prove a somewhat weaker version of this
inequality, where in place of N + 3Q2 we will have πN + Q2.

As we will see, this inequality has several arithmetic consequences. Before
we prove it, and discuss these consequences, it is worth noting that this
inequality is telling us that if we evaluate the poynomial

f(x) =
M+N
∑

n=M+1

anxn
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at x = e2πia/q – i.e. roots of unity – we cannot have that this polynomial is
too big at too many of these places x at once.

Let us now prove the Large Sieve inequality. A key lemma we will need
is given as follows

Lemma 1 Suppose that g(t) is a differentiable function on the interval

[x − h, x + h].

Then,

|g(x)| ≤ 1

2h

∫ x+h

x−h

|g(t)|dt +
1

2

∫ x+h

x−h

|g′(t)|dt.

Proof. To prove the lemma, first define the function

a(t) :=

{

t − x + h, if x − h ≤ t ≤ x;
t − x − h, if x < t ≤ x + h.

Then, consider the following integral, which we evaluate using integration-
by-parts:

∫ x+h

x−h

g′(t)a(t)dt = 2hg(x) −
∫ x+h

x−h

g(t)dt.

So, using the fact that |a(t)| ≤ h for t ∈ [x − h, x + h], we find that

|g(x)| ≤ 1

2

∫ x+h

x−h

|g′(t)|dt +
1

2h

∫ x+h

x−h

|g(t)|dt,

as claimed. �

So, if we let
g(t) = S(t)2,

then this lemma gives

∑

q≤Q

∑

1≤a≤q−1
(a,q)=1

|S(a/q)|2 ≤
∑

q≤Q

∑

1≤a≤q−1
(a,q)=1

(

1

2h

∫ a/q+h

a/q−h

|S(t)|2dt +

∫ x+h

x−h

|S(t)S ′(t)|dt

)

.
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It is easy to see that letting

h =
1

2Q2

keeps these intervals

[a/q − h, a/q + h], 1 ≤ q ≤ Q, (a, q) = 1,

disjoint. And so, we will get

∑

q≤Q

∑

1≤a≤q−1
(a,q)=1

|S(a/q)|2 ≤ Q2

∫ 1

0

|S(t)|2dt +

∫ 1

0

|S(t)S ′(t)|dt.

The first integral is easy to handle, as it has the following exact formula
∫ 1

0

|S(t)|2dt =
M+N
∑

n=M+1

|an|2.

The second integral can be easily bounded from above using the Cauchy-
Schwarz inequality, and in fact this upper bound is

(
∫ 1

0

|S(t)|2dt

)1/2 (∫ 1

0

|S ′(t)|2dt

)1/2

.

The first integral here is what we had before, but to bound the second integral
from above, we observe that

|S ′(t)| =

∣

∣

∣

∣

∣

N
∑

n=1

aM+n(2πn)e2πint

∣

∣

∣

∣

∣

; (1)

so,
∫ 1

0

|S ′(t)|2dt ≤ (4π2N2)
M+N
∑

n=M+1

|an|2.

It follows that

Large Sieve.

∑

q≤Q

∑

1≤a≤q−1
(a,q)=1

|S(a/q)|2 ≤ (Q2 + 2πN)

M+N
∑

n=M+1

|an|2.

In fact, by slightly altering the index n in (1) so that it is over all |n| ≤ N/2
or so, then we can replace the 2πN with πN .
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2 Some arithmetic consequences

The arithmetic applications of the large sieve all hinge on the following easy-
to-prove identity: For any integer q ≥ 1,

∑

1≤a≤q−1

|S(a/q)|2 = q

q−1
∑

r=0

∣

∣

∣

∣

∣

∣

∑

n≡r (mod q)

an − Σ

q

∣

∣

∣

∣

∣

∣

2

,

where

Σ =
M+N
∑

n=M+1

an.

So, if we restrict our attention to the primes q ≤ Q in the large sieve stated
previously, we deduce that

∑

q≤Q

q prime

q

q−1
∑

r=0

∣

∣

∣

∣

∣

∣

∑

n≡r (mod q)

an − Σ

q

∣

∣

∣

∣

∣

∣

2

< (Q2 + πN)
M+N
∑

n=M+1

|an|2. (2)

(Note that I used the slighly stronger form of the large sieve derived in the
previous section – the form with the term πN in place of 2πN .)

From this last inequality it is easy to derive the following basic result:

Reyni’s Sieve. Let S ⊂ [M +1, M +N ] be any set of integers, and suppose
that for a given prime q ≤ Q, S avoids ω(q) residue classes modulo q (i.e.
these residue classes contain no elements of S). Then,

|S| ≤ Q2 + πN
∑

q≤Q ω(q)/q
.

To prove Reyni’s sieve, we define

an =

{

1, if n ∈ S;
0, if n 6∈ S.

Then, we have that if r (mod q) is one of the ω(q) residue classes containing
no elements of S, then

∣

∣

∣

∣

∣

∣

∑

n≡r (mod q)

an − Σ

q

∣

∣

∣

∣

∣

∣

2

=
|S|2
q2

.
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So,

q

q−1
∑

r=0

∣

∣

∣

∣

∣

∣

∑

n≡r (mod q)

an − Σ

q

∣

∣

∣

∣

∣

∣

2

≥ ω(q)|S|2
q

.

Our consequence of the Large Sieve given in (2) then implies

|S|
∑

q≤Q

ω(q)

q
≤ Q2 + πN,

and Reyni’s sieve follows immediately.

It is worth pointing out that there is a much more powerful version of
this sieve, due to Montgomery and Vaughan, which says:

Large Sieve. Suppose that S ⊂ [M + 1, M + N ] is a set of integers, such
that for a given prime p ≤ Q, S avoids ω(p) residue classes mod p. Then,

|S| ≤ N + 3Q2

∑

q≤Q

q square−free

∏

p|q
p prime

ω(p)
p−ω(p)

.

(Note: The constant 3 can be improved, but this form is good enough for
most purposes.)

2.1 An example: The squares

Let S be the set of squares in (
√

N, N ]. Note that

|S| =
√

N − O(N1/4)

Let us see how close an upper bound the above two sieves give.

Let Q =
√

N , and note that for each q ≤ Q, S avoids about q/2 residue
classes mod q; so, we expect ω(q) is about q/2. More precisely, we will have

ω(q) =

{

0, if q = 2;

(q − 1)/2, if 3 ≤ q ≤
√

N.
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Reyni’s sieve then gives us that

|S| ≤ (π + 1)N
∑

3≤q≤
√

N

(

1 − 2
q

) �
√

N log N.

That’s pretty good – we are only off by a factor about c log N from the true
upper bound.

It takes a little work, but it is relatively painless to show that the Montgomery-
Vaughan large sieve gives the upper bound

|S| �
√

N.

So, it is within a constant factor of the true upper bound!

3 Weyl differencing

We have seen on several occasions that getting good upper bounds on expo-
nential sums such as

S(t) :=
∑

n≤N

e2πitf(n),

where f is some integer-valued function, has good consequences as far as
studying additive problems. In particular, we have seen this in the case
where f(x) ∈ Z[x] is monic (i.e. leading coefficient is 1) and where t = a/q
is a rational number.

Weyl differencing gives one a general procedure for establishing upper
bounds on certain special exponential sums where f is a “linearizable func-
tion” (you will figure out what this means by looking at the examples below),
and a “power savings” can often be achieved. By power savings, I mean that
the quality of the upper bounds will be of the type

|S(a/q)| < |S|1−ε.

Here, the trivial upper bound would be |S|; so, we save the power |S|ε over
this trivial upper bound.

There are many techniques which are superior to Weyl differencing for
when f is a polynomial, in that they give much better bounds for exponential
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sums. Two such methods are Vinogradov’s method and van der Corput’s
method; actually, van der Corput’s method is little more than a refinement
of Weyl’s method. In the case where t = a/q, there are even more techniques,
some of which come from algebraic arithmetic geometry, and some just use
sophisticated combinatorics (like the sum-product inequalities of Bourgain,
Katz, and Tao).

Although the most impressive consequences of Weyl’s method come from
when f is not a polynomial and t is not a rational number, we will instead
work with the case f(x) ∈ Z[x] and t = a/q.

First, suppose that
f(x) = x2 + bx + c.

Then, consider

W (a) =
∑

0≤n≤N

e2πiaf(n)/q ,

where we assume that

(a, q) = 1, and N ≤ q − 1.

Note that if f(x) were not monic, and its leading coefficient is coprime to
q, then we could quickly reduce to the monic case by absorbing that lead
coefficient into the factor a in af(n)/q.

The first step in Weyl’s method is to rewrite |W (a)|2 in a funny way:

|W (a)|2 =
∑

0≤n1,n2≤N

e2πia(f(n1)−f(n2))/q

=
∑

|h|≤N

∑

n1≤N

(n2=n1+h)

e2πia(n2
1+bn1+c−(n1+h)2−b(n1+h)−c)

≤
∑

|h|≤N

∣

∣

∣

∣

∣

∑

0≤n1≤N

e2πia(−2n1h)

∣

∣

∣

∣

∣

.

This final inner sum is a geometric series, so we have that it equals

∣

∣

∣

∣

e−2πi(N+1)2ha/q − 1

e2πi2ha/q − 1

∣

∣

∣

∣

≤ 2

|e−πi2ha/q − eπi2ha/q| =
1

| sin(π2ha/q)| .
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Well, this isn’t quite right, because the denominator could vanish; so, the
upper bound is actually

min
(

| sin(π2ha/q)|−1, N + 1
)

.

We can simplify a little bit, using the inequality that for 0 ≤ t ≤ π/2,

sin(t) ≥ 2t/π,

which can be seen by noting that sin(x) lies above the line with endpoints
(0, 0) and (π/2, 1) – this line is y = 2x/π.

So,

| sin(π2ha/q)|−1 = (sin π||2ha/q||)−1 ≤ (2||2ha/q||)−1.

Here, ||x|| denotes the distance from x to the nearest integer.

Putting together the above estimates, we deduce that

|W (a)|2 ≤ (N + 1)|{0 ≤ |h| ≤ N : q|2ha}| +
∑

|h|≤N

q-2ha

1

2||2ha/q||

If we assume that q ≥ 3 is prime, then the only value of h for which q|2ah
is h = 0, and therefore we will have

|W (a)|2 ≤ (N + 1) +
∑

|h|≤N

1

||2ha/q|| .

The largest each term ||2ha/q|| can be is q, and there are at most two values
of h that can make this happen; the second-largest value each term ||2ha/q||
can be is q/2, and again there are at most two values of h that can make this
happen. And so, extending this principle to its ultimate conclusion, we can
deduce that

|W (a)|2 ≤ (N + 1) + 2q
N
∑

j=1

1

j
� q log q.

it follows that:
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Weyl’s Estimate for Quadratics. Suppose that N ≤ q−1 and (a, q) = 1.
Then,

|W (a)| �
√

q log q.

Let us now consider the case of cubics; that is, we assume

g(n) = n3 + bn2 + cn + d.

Then, let

X(a) =
∑

0≤n≤N

e2πiag(n)/q .

As before, we compute |X(a)|2, and so we will need to consider

n3+bn2+cn+d−(n+h)3−b(n+h)2−c(n+h)+d = −3hn2−3h2n−2bhn+r(h),

where r(h) is a polynomial in h (which we can ignore when we go to bound
|X(a)|2 from above). Notice that this polynomial is of degree 2 in the variable
n.

Using the same approach as was used to bound |W (a)|2 from above, we
will have for (a, q) = 1, q prime, and 1 ≤ N ≤ q − 1,

|X(a)|2 ≤
∑

|h|≤N

∣

∣

∣

∣

∣

∑

0≤n≤N

e2πia(−3hn2−3h2n−2bhn)/q

∣

∣

∣

∣

∣

.

Each of these inner sums is an exponential sum involving polynomials of
degree 2, with the exception of the term h = 0; and so, using the case we
already worked out for quadratics, we deduce that

|X(a)|2 � (N + 1) + N
√

q log q � q3/2(log q)1/2.

It follows that
|X(a)| � q3/4(log q)1/4 = q3/4+o(1).

So, we have established

Weyl’s estimate for cubics. For 1 ≤ N ≤ q − 1, q prime, 1 ≤ a ≤ q − 1,
we have

|X(a)| ≤ q3/4+o(1).
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Continuing in this vein we find that:

Weyl’s estimate, general case. If h(n) is a monic, degree d ≥ 2 polyno-
mial with integer coefficients, we will have that as q runs through the primes,
for every 1 ≤ a ≤ q − 1,

∣

∣

∣

∣

∣

∑

0≤n≤N

e2πiah(n)/q

∣

∣

∣

∣

∣

≤ q1−1/2d−1+o(1).

One can use this to prove the following:

Theorem. For every d ≥ 2 there exists ε = ε(d) and k = k(d), such that for
any collection of k polynomials

f1(x), f2(x), ..., fn(x) ∈ Z[x],

each of degree at least 2 and at most d, we have that for every c ∈ Fq, the
number of solutions

(x1, ..., xk) ∈ (Fq)
k : f1(x1) + · · ·+ fk(xk) = c

is asymptotically
qk−1.
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