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Abstract

In this paper we develop a method for determining the number of
integers without large prime factors lying in a given set S. We will
apply it to give an easy proof that certain sufficiently dense sets A
and B always produce the expected number of “smooth” sums a + b,
a ∈ A, b ∈ B. The proof of this result is completely combinatorial and
elementary.

1 Introduction

Given a set S, a common question one tries to answer is whether S contains
the expected number of “y-smooth” integers, which are those integers n
where P (n) ≤ y, where P (n) denotes the largest prime factor of n. We
denote the number of integers in S with this property by Ψ(S, y); and for a
number N > 0, we denote the set of all y-smooths positive integers ≤ N by
Ψ(N, y). So,

Ψ([N ], y) = Ψ(N, y),

where here [N ] denotes the set of integers {1, 2, ..., N}.
If S ⊆ [N ] is “typical”, then one would expect that

Ψ(S, y)

|S| ∼ Ψ(N, y)

N
. (1)

For example, fix a real number 0 < θ ≤ 1 and an integer a 6= 0, and let S
be the set of numbers of the form p + a ≤ N , where p is prime. S is often
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called a set of “shifted primes”. It is conjectured that

Ψ(S,N θ) ∼ π(N)Ψ(N,N θ)

N
∼ ρ(θ−1)π(N), (2)

where

ρ(u) = lim
N→∞

Ψ(N,N1/u)

N
.

This function ρ is called Dickman’s function, and it was proved in [7]
that the limit exists. Unfortunately, proving (2) remains a difficult, open
problem; however, in [9] J. B. Friedlander gave a beautiful proof that for
θ > (2

√
e)−1 = 0.30326...,

Ψ(S,N θ) � π(N),

and in [1], R. Baker and G. Harman proved that for θ ≥ 0.2961,

Ψ(S,N θ) >
N

logα N
,

for some α > 1 and N > N0(a).
There are several methods for attacking the general question of proving

that (1) holds for a particular set S. One such method involves exponential
sums and the circle method, and another uses a Buchstab or inclusion-
exclusion identity in combination with a sieve method (such as the Large
Sieve). For example, one way that one could count the number of y-smooth
integers in a set S is via the following inclusion-exclusion identity:

Ψ(S, y) = |S|−
∑

y<p≤N
p prime

|Sp|+
∑

y≤p1<p2≤N
p1,p2 prime

|Sp1p2 |−
∑

y≤p1<p2<p3≤N
p1,p2,p3 prime

|Sp1p2p3 |+ · · · ,

where Sd denotes the set of elements of S divisible by d. One problem that
one immediately faces is that these prime products d = p1p2 · · · pk can be
very close to N , and when that is the case, in many applications one does
not have good estimates for the size of Sd. That problem can be fixed if one
knows that most of the elements of S have a divisor of size between, say, N δ

and N1−δ that is a product of primes < y, because no such integer could
have a divisor d > N 1−δ that is a product of primes ≥ y. One would also
need asymptotic estimates for the sizes of Sd for all d < N 1−δ in order to
make this approach work; in particular, something like

|Sd| =
|S|(1 + o(1))

d
, for all d < N 1−δ. (3)
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Actually, all one needs is that this holds for “most d < N 1−δ ”, in some
appropriate sense. Often, one only has such estimates for d <

√
N (as

is the case for shifted primes). In the smooth sieve method that we will
present, asymptotic estimates for Sd will not be needed; all that will be
needed are good lower bounds on the size of Sd in a certain average sense.
Furthermore, our method works when different positive weightings of the
naturals are applied (besides the usual weighting, which assigns value 1 to
every natural number).

1.1 Local-Global Sets and the Main Theorem

The key structure that we use in the development of our smooth sieve
method is a “Local-Global Set”, which we abbreviate as “LG set”, and
define as follows:

Definition. Let ε, c ∈ (0, 1) be parameters. Then, A ⊆ [N ] is an LG-set
with parameters ε, c if the following conditions hold:

• If q1, q2 ∈ A are distinct then [q1, q2] > N ;
• |{n ≤ N : q|n for some q ∈ A with q ≤ N c}| ≥ (1 − ε)N .

Notes: This second condition is saying that all but an ε proportion of the
integers n ≤ N are divisible by some element of A of size at most N c. The
first condition tells us that

∑

q∈A

1

q
≤ 1 + O(|A|/N)

(consider the number of n ≤ N which are divisible by some q ∈ A). The
sets A that we construct in this paper will have |A| = o(N), and so we will
have

∑

q∈A

1

q
≤ 1 + o(1).

On the other hand, the second condition implies that

∑

q∈A
q≤Nc

1

q
≥ 1

N

∑

q∈A
q≤Nc

⌊

N

q

⌋

≥ 1 − ε (4)

The last inequality here follows from the fact that the second sum counts the
number of positive integers n ≤ N that are divisible by an element q ∈ A
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satisfying q ≤ N c; and, such n can be divisible by at most one such q by the
first property of LG sets. So, the LG sets we will be considering will have
that the sum of reciprocals of elements of A that are ≤ N c are within ε of
1.

A central result of the paper, proved in section 3, is the following exis-
tence theorem:

Theorem 1 For every 0 < ε < ε0, for every

c ≥ 1 − ε2250,

and for every N > N0(ε), there exists an LG set of integers A ⊆ [N ] with
parameters ε and c.

The origin of our name “Local-Global Set” comes from the following
observation: Suppose that A ⊆ [N ] is an LG set with parameters ε and c.
Suppose that S ⊆ [N ], and let S(a; q) denote the number of integers in S
that are congruent to a modulo q. Fix a non-negative integer a ≤ N , and
suppose that we can prove that

For every q ∈ A, S(a; q) >
(1 − ε)|S|

q
. (5)

If S were equidistributed amongst the residue classes modulo q, then S(a; q) =
|S|/q+O(1); so, we are assuming a lower bound that is off from the expected
amount by a factor of 1 − ε. Now, since A is an LG set we have that each
element of S − a can be divisible by at most one member of A; so,

∑

q∈A

(

S(a; q) − |S|
q

)

≤ |S|



1 −
∑

q∈A

1

q



 ≤ ε|S|.

If we let A0 be those q ∈ A such that S(a; q) < |S|/q, then we have from
(5) that for every q ∈ A0,

∣

∣

∣

∣

S(a; q) − |S|
q

∣

∣

∣

∣

<
ε|S|
q

.

Thus,

∑

q∈A

∣

∣

∣

∣

S(a; q) − |S|
q

∣

∣

∣

∣

=
∑

q∈A

(

S(a; q) − |S|
q

)

+ 2
∑

q∈A0

∣

∣

∣

∣

S(a; q) − |S|
q

∣

∣

∣

∣

< 4ε|S|.
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Thus, a good uniform lower bound (5) implies equidistribution of the ele-
ments of S in residue classes a (mod q) in some average sense. One can
think of this as some type of local-to-global phenomenon.

1.2 The Local-Global Sieve for Smooth Numbers

Our smooth sieve result below will be stated in terms of weight functions,
rather than sets, as they are more general and more flexible than sets. So,
we suppose that w(n) ≥ 0 is defined for natural numbers, and then our
problem is to give good estimates for the size of

W (N, θ) :=
∑

n≤N

P (n)≤Nθ

w(n).

Letting

Σ :=
∑

n≤N

w(n),

we note that since the sum W (N, θ) has only a fraction ρ(θ−1) times as
many terms as Σ, we expect that

W (N, θ) ∼ ρ(1/θ)Σ.

Our smooth sieve, which is proved in section 4, gives conditions for when
this is the case:

Theorem 2 Suppose 0 < ε < ε0, and let A be the LG set with parameters
ε and c = 1 − ε2250 given by Theorem 1. 1 Let

A1 = {q ∈ A, q ≤ N c : P (q) ≤ N θ}, and A2 = {q ∈ A, q ≤ N c : P (q) > N θ}.

Define the constants

ρ1 =
∑

q∈A1

1

q
, and ρ2 =

∑

q∈A2

1

q
.

1This theorem makes use of the structure of the LG set given by theorem 1, which

is described in section 3; and so, the theorem doesn’t hold for just any LG set with

parameters ε and c.
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Suppose

∑

q∈A1

∑

n≤N
q|n

w(n) > (ρ1 − ε)Σ; and, (6)

∑

q∈A2

∑

n≤N
q|n

w(n) > (ρ2 − ε)Σ. (7)

Then, we have that

(ρ1 − ε)Σ < W (N, θ) < (ρ1 + 2ε)Σ, (8)

and
(ρ(1/θ) − 3ε)Σ < W (N, θ) < (ρ(1/θ) + 4ε)Σ. (9)

Moreover, if one is only able to show (6), then one can still deduce the
lower bound

W (N, θ) > (ρ1 − ε)Σ > (ρ(1/θ) − 3ε)Σ. (10)

To see that the assumptions in this theorem are weaker than (3), let
w(n) be the indicator function for a set S ⊆ [N ]. Then, (6) and (7) are just
saying that we have a lower bound of the general form

Sd >
(1 − ε)|S|

d

on average.

We will close this section by giving a simple application of the above
theorem, and in the next section we will give a more sophisticated applica-
tion: Suppose that S ⊆ [N ] and |S| = N 1−o(1). How many ordered pairs
(s1, s2) ∈ S × S have the property that s1 − s2 is N θ-smooth? We expect
there to be about ρ(1/θ)|S|2 such pairs. To prove this using the above theo-
rem, define w(n) to be the number of ways of writing n = s1−s2, s1, s2 ∈ S.
Then, the sum over all w(n) with n ≥ 1 divisible by q is

q−1
∑

a=0

(

S(a; q)

2

)

,

This expression is minimized if the elements of S are as equidistributed
amongst the residue classes modulo q as is possible; and so, this expression
can be shown to be at least ∼ |S|2/2q in size for q = o(|S|). So, for any ε > 0
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we have that for N sufficiently large both (6) and (7) hold. It follows that the
number of pairs (s1, s2), s1 > s2 such that P (s1−s2) ≤ N θ is ∼ ρ(1/θ)|S|2/2;
so, there are ∼ ρ(1/θ)|S|2 pairs (s1, s2) with P (s1 − s2) ≤ N θ.

The remainder of the paper is organized as follows. In the next section
we will prove that under certain conditions a set S has about ρ(1/θ)|S|2
ordered pairs (s1, s2) ∈ S × S such that P (s1 + s2) ≤ N θ; and, in the
process of proving this, we will present a large sieve inequality that follows
easily from properties of LG sets. In the final sections we will give proofs of
Theorems 1 and 2.

2 An Application of Theorems 1 and 2

Given sets of integers A,B ⊆ [N ] having � N elements each, it is an
interesting and studied question to determine the number of ordered pairs
(a, b) ∈ A × B such that P (a + b) ≤ y. There are several ways of attacking
this sort of problem, one of which is to use the circle method and exponential
sums over smooth numbers, and another is to use the large sieve. We could
also ask how τ(a + b) (the number of divisors of a + b) is distributed, or
how large P (a + b) can be. These types of questions were given a thorough
treatment in a series of beautiful papers by A. Balog and A. Sárközy [2], [3],
[4], and [5]; P. Erdős, H. Maier, and A. Sárközy [8]; A. Sárközy and C. L.
Stewart [11], [12], [13], [14]; C. Pomerance, A. Sárközy, and C. L. Stewart
[10]; and R. de la Bretèche [6]. The paper by de la Brèteche is more relevant
to the main result of this section, and we give here one of his theorems:

Theorem 3 Suppose that A,B ⊆ [N ]. For a given integer y ≤ N , let
u = (log N)/ log y. Then, uniformly for N ≥ 3, exp((log N)2/3+ε) < y ≤ N
we have

#{a ∈ A, b ∈ B : P (a + b) ≤ y}

= |A||B|ρ(u)

(

1 + O

(

N
√

|A||B|
log(u + 1)

log y

))

.

R. de la Bretèche used estimates for exponential sums and the circle
method to prove this result. Notice that if |A||B| � (N/ log N)2, then his
result fails to prove that there are the expected number of sums that are
y-smooth for any y < N , because in this case the big-Oh term is � 1. What
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makes his theorem so powerful is the fact that the parameter y is allowed
to go all the way down to exp((log N)2/3+ε).

Let us now consider what happens in the case when y = N θ (and so
u = 1/θ): Is it possible to show that if |A|, |B| > N c, for some 0 < c < 1,
then we get the expected number of sums a + b being y-smooth? It is easy
to see that the answer is no, no matter how close to 1 we take c to be. For
example, if θ + c > 1 we could take A and B to both be the set of integers
≤ N that are divisible by some prime number p ∼ N 1−c. Notice here that
|A| ∼ N c. The sums a + b, a, b ∈ A are numbers of the form pk, where
k < 2N c, and such a sum is N θ-smooth if and only if k is N θ-smooth. Thus,
one would expect (and can show) that

#{a, b ∈ A : P (a + b) ≤ N θ}
|A||B| ∼ Ψ(2N c, N θ)

2N c
∼ ρ(c/θ).

On the other hand, the proportion of N θ smooths ≤ N is ∼ ρ(1/θ), which
is not ρ(c/θ). So, the type of result we might try to prove is the following:

Theorem 4 Given 0 < θ ≤ 1, and 0 < γ < γ0 if A,B ⊆ [N ] satisfy
|A|, |B| > (8/γ)N 1−(γ/8)2250 , then for N sufficiently large

#{a ∈ A, b ∈ B : P (a+b) ≤ (2N)θ} = (ρ(1/θ)+δ)|A||B|, where |δ| < γ.

The same result holds for differences a − b.

In section 2.2 we will give a short proof of this theorem using Theorem
2 and a version of the Large Sieve.

2.1 A Local-Global Large Sieve

For our proof of Theorem 4 we will require a form of the Large Sieve, which
can be proved via modifying the usual proofs of the large sieve; however,
we will prove it here (perhaps surprisingly) through a brief and elementary
application of LG sets.

Theorem 5 Given ε > 0 and N sufficiently large, let A ⊆ [N ] be any LG
set for parameters ε and c. Suppose that C ⊆ [N ], and let C(a, q) denote
the number of elements of C that are congruent to a modulo q. Then, we
have that

∑

q∈A
q≤Nc

q−1
∑

a=0

(

C(a, q) − |C|
q

)2

< |C|(ε|C| + N c).
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Proof. We note that if b, c ∈ C, and b 6= c, then if q ∈ A divides b − c,
we must have that q is unique; otherwise, if q ′ ∈ A also divides b − c, then
[q, q′] > N and [q, q′]|(b − c).

Thus, we have that

|C|2 >
∑

q∈A
q≤Nc

#{(b, c) ∈ C2 : b 6= c, q|(b − c)}

=
∑

q∈A
q≤Nc

q−1
∑

a=0

(

C(a, q)2 − C(a, q)
)

≥ −N c|C| +
∑

q∈A
q≤Nc

q−1
∑

a=0

C(a, q)2.

Thus,

|C|(N c + |C|) <
∑

q∈A
q≤Nc

q−1
∑

a=0

C(a, q)2.

From this and (4) it follows that

∑

q∈A
q≤Nc

q−1
∑

a=0

(

C(a, q) − |C|
q

)2

=
∑

q∈A
q≤Nc

q−1
∑

a=0

C(a, q)2 − |C|2
∑

q∈A
q≤Nc

1

q

< (1 − (1 − ε))|C|2 + N c|C|
= |C|(ε|C| + N c). �

2.2 Proof of Theorem 4.

We let ε = γ/8, and then for c = 1− ε2250 we have from Theorem 1 that for
N sufficiently large, there is an LG set A ⊆ [2N ] with parameters ε, c. We
let A1 and A2 be as in Theorem 2 (with N replaced with 2N).

Let α, β be the indicator functions for the sets A and B, respectively;
let

A(a, q) =
∑

n≤N
n≡a (mod q)

α(n), and B(a, q) =
∑

n≤N
n≡a (mod q)

β(n);

and define the weight function

w(n) = (α ∗ β)(n) =
∑

a+b=n

α(a)β(b).
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Then, for A′ = A1 or A2 we get

∑

q∈A′

∑

n≤2N
q|n

w(n) =
∑

q∈A′

q−1
∑

a=0

A(a, q)B(q − a, q)

=
∑

q∈A′

q−1
∑

a=0

(A(a, q) − |A|/q)(B(q − a, q) − |B|/q)

+ |A||B|
∑

q∈A′

1

q
. (11)

Applying the Cauchy-Schwarz inequality and Theorem 5 with C = A and
C = B to this last double sum we deduce for |A|, |B| > ε−1N c that

∑

q∈A′

q−1
∑

a=0

|A(a, q) − |A|/q||B(a, q) − |B|/q| < 2ε|A||B|. (12)

Combining this with (11) we deduce that

∑

q∈A′

∑

n≤2N
q|n

w(n) > |A||B|



−γ

4
+
∑

q∈A′

1

q



 .

Thus, the conditions of Theorem 2 are met for ε replaced with γ/4, and we
deduce that since Σ = |A||B| in our case, then

∣

∣

∣
#{a ∈ A, b ∈ B : P (a + b) ≤ (2N)θ} − ρ(1/θ)|A||B|

∣

∣

∣
< γ|A||B|. �

3 Proof of Theorem 1

In the course of our proof we will need to make use of the following conse-
quence of Brun’s upper bound sieve:

Theorem 6 Suppose that P is a subset of the primes ≤ N . The number of
integers ≤ N not divisible by any prime in P is

� N
∏

p∈P

(

1 − 1

p

)

.
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Define A(k, δ) to be the set of all integers q ≤ N of the form p1 · · · pk,
p1 > p2 > · · · > pk > N δ, where

For i = 1, 2, ..., k − 1,
N

p1 · · · pi
≥ pi; while,

N

p1 · · · pk
< pk. (13)

We will show that for every 0 < ε < ε0, there exists δ > 0 so that

A =
⋃

k≥1

A(k, δ) (14)

is an LG set with parameters ε and c = 1 − ε2250.

3.1 The Set A satisfies the First Property for an LG Set

First, we show that the set A described in the previous subsection satisfies
the first condition for being an LG set, namely that for any distinct pair
of integers n1, n2 ∈ A, we have lcm(n1, n2) > N : Say n1 ∈ A(k, δ) and
n2 ∈ A(`, δ); so, we have the prime factorizations

n1 = p1 · · · pk, p1 > p2 > · · · > pk; and

n2 = q1 · · · q`, q1 > q2 > · · · > q`.

Without loss of generality, we can assume that pk ≤ q`.
Now, if there is some prime qi which is distinct from the primes p1, ..., pk,

then we would have that the lcm of n1 and n2 is divisible by the product of
primes qip1 · · · pk, and this product exceeds N , because from (13)

qip1 · · · pk > qi
N

pk
≥ q`

N

pk
≥ N.

So we are left to consider what happens when the qi’s are a subset of the
pi’s. We break this case into two sub-cases, with the first one where pk = q`,
and the second where pk < q`.

In the case pk = q`, we must have that there exists one of the primes
pi > q` such that pi is distinct from q1, ..., q`, since otherwise we would have
n1 = n2. But now our assumption gives

N

p1 · · · pk
≤ N

piq1 · · · q`
<

q`

pi
≤ 1,

which is impossible.
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So, we may assume pk < q`. For this case, let j < k be the index where
pj = q` (which exists since qi’s are a subset of the pi’s). Then, we have

p1 · · · pj ≥ q1 · · · q`.

From (13) this gives

q` = pj ≤ N

p1 · · · pj
≤ N

q1 · · · q`
< q`,

which is impossible. So, we conclude that the set A given by (14) satisfies
the first condition for being an LG set.

3.2 The Set A Satisfies the Second Property for an LG Set

Define F to be the set of all integers n satisfying

N

log N
< n < N,

such that
If n = u2v, v squarefree, then u < log N.

We have that the number of n ≤ N that are not contained in F is at
most

N
∑

u≥log N

1

u2
� N

log N
.

So,
|F | = N − O(N/ log N).

Now define G to be the integers n ∈ F that are not divisible by any
element of A. Our goal will be to show that |G| is “small”.

We first observe that one can deduce from (13) that every n ∈ G has the
property that for all N δ < x ≤ N ,

N
∏

p|n, p prime
p≥x

p
≥ x. (15)

For if q is the largest x for which this inequality fails (such q exists), then q
is prime, and we would have

N
∏

p|n, p prime
p≥q

p
< q,
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which would imply
∏

p≥q, p|n p is an element of A dividing n ∈ G, contra-
diction.

We conclude that for n ∈ G,

∏

p|n
p<x

p >
n

(log2 N)
∏

p|n
p≥x

p
>

N

(log3 N)
∏

p|n
p≥x

p
≥ x

log3 N
. (16)

This brings us now to the conceptual heart of the proof of Theorem 1:
Given x ≤ N , the average of

∑

p|n,p<x log p over all n ≤ N is log x + O(1);
however, for “most” n, as we vary x, this sum should fluctuate about log x,
meaning that for “most” n there is an N δ < x ≤ N for which (16) fails to
hold. The rest of the proof amounts to formalizing this intuition.

Let R = 5 × 108, and let

J = J(δ) =

⌊

log(1/2δ)

log(R)

⌋

. (17)

Note that RJδ ≤ 1/2.
Let G(h) be the set of all n ∈ G for which exactly h integers j among

1, 2, ..., J satisfy
∑

p|n, p prime

p≤NδRj

log p >
3δRj log N

2
.

Write
G = G1 ∪ G2,

where
G1 =

⋃

0≤h≤J/14

G(h), and G2 =
⋃

J/14<h≤J

G(h).

To show that |G| is “small” we will show that both |G1| and |G2| are “small”.

3.2.1 |G2| is “small”

Define

z(n) = z(n, δ,R) :=

J
∏

j=1









∑

p|n, p prime

p≤NδRj

log p









.
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Since every n ∈ G(h) also lies in G, from (16) we have that for j = 1, ..., J ,

∑

p|n, p prime

p≤NδRj

log p > δRj log N − 3 log log N.

So, for n ∈ G(h) we will have

z(n) > (1 + o(1))(δ log N)JRJ(J+1)/2(3/2)h. (18)

Lemma 1 We have that

∑

n≤N

z(n) � N(δ log N)JRJ(J+1)/2 exp(2J/
√

R).

Proof of the Lemma. We have that

∑

n≤N

z(n) =
∑

p1,...,pJ prime

pj≤NδRj

(log p1) · · · (log pJ)

⌊

N

[p1, ..., pJ ]

⌋

< N
∑

p1,...,pJ prime

pj≤NδRj

(log p1) · · · (log pJ)

[p1, ..., pJ ]

≤ N
∑

a1,...,aJ
0≤aj≤J−j+1

j≤a1+···+aj≤J

∏

1≤j≤J
aj 6=0









∑

p≤NδRj

p prime

logaj p

p









� N(δ log N)J
∑

a1,...,aJ
0≤aj≤J−j+1

j≤a1+···+aj≤J

∏

1≤j≤J
aj 6=0

Rjaj

aj
. (19)

Here we have used the basic estimate for a ≥ 1

∑

p≤M
p prime

loga p

p
∼
∫ M

2

(log x)a−1dx

x
∼ loga M

a
.

Now, suppose that for every j ≤ J we have

j ≤ a1 + · · · + aj ≤ J, where 0 ≤ aj ≤ J − j + 1,
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and that exactly k of the ais are non-zero. Then,
∏

1≤j≤J

Rjaj ≤ RJ(J+1)/2−J+k.

Thus, the final expression of (19) is

� N(δ log N)JRJ(J+1)/2−J
∑

1≤k≤J

(

J

k

)

∑

b1+···+bk=J
bi≥1

Rk

= N(δ log N)JRJ(J+1)/2−J
∑

1≤k≤J

Rk

(

J

k

)(

J − 1

k − 1

)

� N(δ log N)JRJ(J+1)/2−J+1/2
∑

1≤k≤J

Rk−1/2

(

2J − 1

2k − 1

)

< N(δ log N)JRJ(J+1)/2

(

1 +
1√
R

)2J−1

� N(δ log N)JRJ(J+1)/2 exp(2J/
√

R). �

With our choice of R = 5 × 108 we will have from Lemma 1 that for
δ > 0 sufficiently small,

∑

n∈G

z(n) <
N

2
(1.0001 δ log N)JRJ(J+1)/2.

Combining this with (18) we deduce

|G(h)| < (1.0001)J (2/3)hN.

It follows that for N sufficienty large,

|G2| < 3(1.0001)J (2/3)J/14N <
N(0.98)J

3
.

3.2.2 |G1| is “small”

To bound |G1| from above, we will bound |G(h)| from above for h ≤ J/14:
Given h ≤ J/14 we split G(h) into smaller subsets as follows

G(h) =
⋃

B⊆[J]
|B|=h

G(h;B),

15



where G(h;B) is the set of all n ∈ G with the property that

∑

p|n, p prime

p≤NδRj

log p ≥ 3δRj log N

2
if and only if j ∈ B.

Given B, we let B ′ = [J ] \ B. We note that every n ∈ G(h;B) has no
prime divisors p lying in any of the intervals

[N3δRj/4 log2 N, N δRj
], where j ∈ B ′. (20)

For if some n ∈ G(h;B) had such a prime divisor p, then we would have
that

∏

q|n, q prime
q<p

q ≤ 1

p

∏

q|n, q prime

q≤NδRj

q <
N3δRj/4

log2 N
≤ p

log4 N
,

which would contradict (16), and therefore we would have that n 6∈ G.
From Theorem 6, together with the fact that n ∈ G(h;B) has no prime

divisors lying in the intervals (20), we deduce that

|G(h;B)| � N
∏

j∈B′

∏

N3δRj /4 log2 N<p<NδRj

p prime

(

1 − 1

p

)

� (3/4)|B
′ |N.

Thus, for h ≤ J/14 and for δ > 0 sufficiently small, we will have from
Stirling’s formula that

|G(h)| � N

(

J

h

)

(3/4)J−h <
N(0.991)J

3J
.

Thus, for δ > 0 sufficiently small and N sufficiently large,

|G1| <
N(0.991)J

3
.

3.3 G is “small”, and the Conclusion of the Proof of the

Theorem

From the upper bounds on |G1| and |G2| we deduce for R = 5 × 108 and
δ > 0 sufficiently small and N sufficiently large,

|G| ≤ |G1| + |G2| ≤ 2N(0.991)J

3
;
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and so, the number of integers n ≤ N not divisible by any element from the
set A is at most

(N − |F |) + |G| < N(0.991)J .

Thus, we have that

1

N

∑

a∈A

⌊

N

a

⌋

> 1 − (0.991)J .

Now, since the prime divisors of the elements of A exceed N δ, we will
have from Theorem 6 and Mertens’ Theorem that for N 1/2 < M < N there
are

� M
∏

p≤Nδ

p prime

(

1 − 1

p

)

� M

δ log N

elements of A that are less than M . Thus, for 1/2 < c ≤ 1,

∑

a∈A
Nc<a≤N

1

a
� log(1/c)

δ
.

It follows that that the number of integers n ≤ N divisible by some element
of A that is ≤ N c is

∑

a∈A
a≤Nc

⌊

N

a

⌋

> N(1 − (0.991)J − Cδ−1 log(1/c)),

where C > 0 is some constant.
This will exceed N(1 − ε) provided

(0.991)J <
ε

2
, and Cδ−1 log(1/c) <

ε

2
. (21)

From (17) we have that for ε < 1/2 the first inequality holds provided

δ < (ε/2)1−log(R)/ log(0.991),

The second inequality of (21) holds provided

log(c) >
−εδ

2C
>

−(ε/2)2−log(R)/ log 0.991

C
.

So, for ε > 0 sufficiently small and

c > 1 − ε2250 > 1 − (ε/2)2−(log R)/ log 0.991

2C
,

all but at most N(1 − ε) of the integers n ≤ N will be divisible by some
element of A. �

17



4 Proof of Theorem 2.

First, we remark that

1 − ε ≤
∑

n∈A
n≤Nc

1

n
= ρ1 + ρ2 < 1 + o(1). (22)

From the properties of the set A defined at the beginning of section 3 we
have that if q|n, n ≤ N , and q ∈ A1, then n/q < q0 ≤ N θ, where q0 is the
smallest prime divisor of q. Thus, n is N θ-smooth. Also, if q|n where q ∈ A2,
then n is obviously not N θ-smooth, since q has a prime factor exceeding N θ

in this case.
We deduce from this and (6) that

W (N, θ) ≥
∑

q∈A1

∑

n≤N
q|n

w(n) ≥ (ρ1 − ε)Σ.

Also,

W (N, θ) ≤ Σ −
∑

q∈A2

∑

n≤N
q|n

w(n),

which, together with (6), (7) and (22), implies

W (N, θ) ≤ (1 − ρ2 + ε)Σ ≤ (ρ1 + 2ε)Σ.

Thus, we have proved (8) and the first inequality in (10).

To prove (9) and the second inequality in (10) we must relate ρ(1/θ) and
ρ1 and ρ2. To do this we observe that since

ρ(1/θ) ≥ (1 + o(1))Ψ(N,N θ)

N
≥ (1 + o(1))

N

∑

q∈A1

⌊

N

q

⌋

= ρ1 + o(1),

and

1 − ρ(1/θ) ≥ 1 + o(1) − Ψ(N,N θ)

N
≥ (1 + o(1))

N

∑

q∈A2

⌊

N

q

⌋

= ρ2 + o(1),

we deduce from (22) that

o(1) < ρ(1/θ) − ρ1 < ε + o(1).

Thus, (9) follows.
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