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Abstract

Given a density 0 < σ ≤ 1, we show for all sufficiently large primes
p that if S ⊆ Z/pZ has the least number of three-term arithmetic
progressions among all sets with at least σp elements, then S contains
an arithmetic progression of length at least log1/4+o(1) p.

1 Introduction

Given a prime p, we say that S ⊆ Z/pZ is a critical set for the density σ if
|S| ≥ σp and S has the least number of three-term arithmetic progressions
among all the subsets of Z/pZ having at least σp elements. In this context,
an arithmetic progression of length k is a sequence of residue classes (n, n+
m,n + 2m, ..., n + (k − 1)m) modulo p. Note that this includes “trivial”
progressions, which are ones where m ≡ 0 (mod p), as well as “non-trivial”
progressions, which are ones where m 6≡ 0 (mod p). Also notice that the
progression (1, 2, 3), say, is distinct from (3, 2, 1); that is, in our definition,
it matters how the progression is ordered.

The main result of this paper is the following theorem, which basically
says that critical sets of positive density must have long arithmetic progres-
sions.

Theorem 1 For every 0 < σ ≤ 1 and any sufficiently large prime p, if S ⊆
Z/pZ is critical for the density σ, then S contains an arithmetic progression
of length at least log1/4+o(1) p. 1

∗Supported in part by an NSF grant.
1One might would think that this gives a new proof of Roth’s theorem on three-term

arithmetic progressions; however, in our proof, we use a theorem of Varnavides, which
implicitly makes use of Roth’s result.
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Moreover, for every 0 < σ ≤ 1, L > 0, and p sufficiently large, there
exists an arithmetic progression P ⊆ Z/pZ of length at least logL p, such
that

|S ∩ P | > |P |
(

1 − 1

log1/4+o(1) p

)

.

It is easily seen that the second assertion of the theorem for the case
L = 1 implies the first one. For, if |S ∩ P | > |P |(1 − log−1/4+o(1) p), then
|P \S| < |P | log−1/4+o(1) p, whence S∩P contains an arithmetic progression
of length at least (1 − log−1/4+o(1) p)/ log−1/4+o(1) p = log1/4+o(1) p. For
this reason we will only be concerned below with the proof of the second
assertion.

We now compare this theorem with the state-of-the-art on long progres-
sions in arbitrary sets of integers. As a consequence of Gowers’ deep and
beautiful proof of Szemerédi’s Theorem [3, Theorem 18.6], one can show
that for 0 < δ ≤ 1, and all x sufficiently large, any set S ⊆ {1, 2, ..., x}
having at least δx elements contains an arithmetic progression of length at
least log log log log log(x) + c(δ), for some constant c(δ). This is a consid-
erably shorter arithmetic progression than the one given for critical sets in
our theorem above.

There are also some results for sumsets, which give much longer arith-
metic progressions. For example, Bourgain [1] proved the interesting result
that if A,B ⊆ {1, ..., x}, where |A| > δx, |B| > γx, then the sumset A + B
contains an arithmetic progression of length at least exp(c(δγ log x)1/3 −
log log x) (for some c > 0). Ruzsa [9] gave an ingenious construction, which
shows that for every 0 < ε < 1/3, and all x sufficiently large, there ex-
ists a set A having at least b(ε)x elements (for some function b(ε) > 0
that depends only on ε), such that A + A has no arithmetic progressions
longer than exp(log2/3−ε x). Then, Green [4] improved Bourgain’s result,
and showed that A+B contains an arithmetic progression of length at least
exp(c′(δγ log x)1/2 − log log x). We note that the length of the progressions
in these sumsets is much larger than the ones we give for critical sets; and
so, if we could somehow prove that critical sets are sumsets of two large sets
A and B, then our result could possibly be improved.

There are also some impressive results on long arithmetic progressions in
repeated sumsets A+A+ · · ·+A and subset sums, notably those of Freiman
[2]; Sárkőzy [10], [11], and [12]; Lev [6], and [7]; Vu and Szemerédi [14] and
[15]; and Solymosi [13].

It is worth pointing out that our argument has many common features
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with that of Green [4]. In particular, we both make use of large deviation
(or concentration of measure) results from probability theory; and we both
use techniques involving Bohr neighborhoods. However, the combinatorial
aspects of our results are different, which reflects the fact that sumsets and
critical sets have different properties that must be exploited in different
ways.

It might be possible to refine the proof of Theorem 1 to show that critical
sets S ⊆ Z/pZ of density σ have a long arithmetic progression for any
σ > (log log p)−1, say. It should also be possible to prove that if S is “nearly”
critical, meaning that the number of three-term progressions in S is at most
1 + ε times the number in a critical set with the same density as S, then S
should have a long arithmetic progression, where the smaller we take ε, the
longer will be the length of the arithmetic progression.

2 Proof of Theorem 1

We note that L > 1 can be assumed without loss of generality.
We identify subsets of Z/pZ with their indicator functions; say,

S(n) =

{

1, if n ∈ S;
0, otherwise.

Now, for a function f : Fp → C we define the discrete Fourier transform
of f to be

f̂(a) =
∑

0≤n≤p−1

f(n)e2πian/p.

Then the number of three-term arithmetic progressions in the set S is

∑

r+s≡2t (mod p)

S(r)S(s)S(t) =
1

p

∑

0≤a≤p−1

Ŝ(a)2Ŝ(−2a).

We write this last sum as Σ1 + Σ2, where Σ1 is the sum over all those a
with

|Ŝ(−2a)| >
p log log p√

log p
, (1)

and where Σ2 is the sum over the remaining values of a. ¿From Parseval’s
identity we deduce the estimate

|Σ2| ≤ p log log p√
log p

∑

0≤a≤p−1

|Ŝ(a)|2 ≤ σp3 log log p√
log p

. (2)
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We now bound the number of terms in Σ1 from above. Denote this
number of terms by M . Then, by Parseval’s identity we get that

p2(log log p)2

log p
M <

∑

0≤a≤p−1

|Ŝ(a)|2 = σp2,

which implies

M <
σ log p

(log log p)2
. (3)

We next require the following basic lemma.

Lemma 1 Suppose that 0 ≤ a1, ..., ak ≤ p − 1, K > 0 and

k ≤ log p

K log log p
.

Then, for p sufficiently large there is an integer 1 ≤ n ≤ p − 1 such that
∣

∣

∣

∣

∣

∣

∣

∣

ain

p

∣

∣

∣

∣

∣

∣

∣

∣

≤ 1

logK p
; i = 1, 2, . . . , k, (4)

where ||x|| denote the distance from x to the nearest integer.

Proof of the Lemma. Draw a k-dimensional cube with edge length
1/ logK p around each point of the form

({a1y/p}, ..., {aky/p}),

where y runs through the integers 0, 1, ..., p − 1, and where {t} = t − btc
denotes the fractional part of t. If p/ logkK p ≥ 1 then two of these cubes
(considered as torus subsets) will intersect, and the assertion follows. �

Let a1, ..., aM be the values of a satisfying (1), which are the indices of
the terms in Σ1. For k = M and K = 2L, we have that since M satisfies (3),
the hypotheses of Lemma 1 hold; and so, there is an integer n0 satisfying
(4) for n = n0. Now, let P0 be the arithmetic progression

P0 = {in0 (mod p) : 0 ≤ i < logL p}. (5)

The proof of the main theorem of the paper will amount to showing
that S is saturated on some translate of −P0; that is, S ∩ (j − P0) contains
“almost” |P0| elements for some j ∈ Z/pZ. We prove this by showing that
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if |S ∩ (j − P0)| is not close to |P0| for any j, then we can produce a new
set S′, where |S ′| is slightly larger than |S|, such that this set S ′ has an
anomalously small number of three-term arithmetic progressions, relative to
other sets with |S ′| elements. We will then intersect S ′ with another set
having few three-term arithmetic progressions, to produce a new set S ′′,
such that |S ′′| = |S|, and S ′′ has fewer three-term arithmetic progressions
than S. This contradicts the fact that S ′ is critical, and so we must have
had that S is saturated on some translate of −P0.

For m ∈ Z/pZ we denote by (S ∗ P0)(m) the number of representations
of m as a sum of an element of S and an element of P0. Our notation is
explained by the fact that S ∗P0 is the convolution of the indicator functions
S and P0:

(S ∗ P0)(m) =
∑

a+b≡m (mod p)

S(a)P0(b).

Observe that
0 ≤ (S ∗ P0)(m) ≤ min{|S|, |P0|}.

We now show that if S is a critical set, then

(S ∗ P0)(m) > |P0|
(

1 − log log p

log1/4 p

)

, (6)

for some m; Theorem 1 will then follow as |(S ∗ P0)(m)| = |S ∩ (m − P0)|.
Assuming, for proof by contradiction, that (6) fails to hold for every

0 ≤ m ≤ p − 1, let

κ = 1 − log log p

log1/4 p
.

Then, define the weighting function w(m) for 0 ≤ m ≤ p − 1 to be

w(m) =
(S ∗ P0)(m)

κ|P0|
,

so that

ŵ(0) =
(Ŝ ∗ P0)(0)

κ|P0|
=

Ŝ(0)P̂0(0)

κ|P0|
= κ−1|S| (7)

and

ŵ(a) =
(Ŝ ∗ P0)(a)

κ|P0|
=

Ŝ(a)P̂0(a)

κ|P0|
. (8)

From the assumption that (6) fails for holds for every m, we deduce

0 ≤ w(m) ≤ 1.
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Lemma 2 For any function w : Z/pZ → [0, 1] there exists another function
u : Z/pZ → {0, 1} such that û(a) = ŵ(a) + O(

√
p log p) for all a ∈ Z/pZ,

and in addition, û(0) = ŵ(0) + δ with 0 ≤ δ < 1.

Before we can prove this lemma we require the following concentration
of measure result due to Hoeffding [5] (also see [8], Theorem 5.7).

Proposition 1 Suppose that z1, ..., zr are independent real random variables
with |zi| ≤ 1. Let µ = E(z1 + · · · + zr), and let Σ = z1 + · · · + zr. Then,

Prob (|Σ − µ| > rt) ≤ 2 exp(−rt2/2),

for any t > 0.

From this proposition we deduce the following corollary, which is the
version of this result that we actually use.

Corollary 1 Suppose that v1, ..., vr are independent complex random vari-
ables with |vi| ≤ 1. Let ν = E(v1 + · · · + vr), and let Σ = v1 + · · · + vr.
Then,

Prob (|Σ − ν| > rt) ≤ 4 exp(−rt2/4),

for any t > 0.

Proof of the Corollary. Let

νx = Re(ν), and νy = Im(ν).

Then, for j = 1, 2, ..., r define the random variables

xj = Re(vj), and yj = Im(vj).

We note that these random variables xj , yj are bounded from above by 1 in
absolute value, because |vj | ≤ 1. Therefore, |νx| ≤ r and |νy| ≤ r. Finally,
let

Σx = x1 + · · · + xr, and Σy = y1 + · · · + yr.

Observe that if the event |Σ − ν| > rt occurs, then either we have that

|Σx − νx| >
rt√
2
,

or that

|Σy − νy| >
rt√
2
.
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To bound the probability of the first of these events, we apply Hoeffding’s
theorem with zj = xj , and deduce that

Prob(|Σx − νx| > rt/
√

2) ≤ 2 exp(−rt2/4);

likewise,
Prob(|Σy − νy| > rt/

√
2) ≤ 2 exp(−rt2/4).

Thus,
Prob(|Σ − ν| > rt) ≤ 4 exp(−rt2/4),

as claimed. �

Proof of Lemma 2. Let x0, ..., xp−1 be independent Bernoulli random
variables with

Prob(xm = 1) = w(m).

Then, for each integer a satisfying 0 ≤ a ≤ p − 1, we define

X(a) =

p−1
∑

j=0

xje
2πija/p,

which is the sum of independent random variables vj = xje
2πija/p.

Now,

E(X(a)) = E(v0) + · · · + E(vp−1) =

p−1
∑

j=0

E(xj)e
2πija/p = ŵ(a)

and applying Corollary 1, we deduce that

Prob(|X(a) − ŵ(a)| >
√

p log p) ≤ 4 exp(−(log2 p)/4).

Thus, the probability that

For all a = 0, 1, ..., p − 1, |X(a) − ŵ(a)| ≤ √
p log p (9)

is at least
1 − 4p exp

(

−(log2 p)/4
)

,

which is positive for p sufficiently large.
Since (9) holds with positive probability, there exists a function u :

Z/pZ → {0, 1}, such that

For all a = 0, 1, ..., p − 1, |û(a) − ŵ(a)| <
√

p log p.
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We know that since w(n) ∈ [0, 1], ŵ(0) ∈ [0, p]; likewise, û(0) ∈ [0, p].
Thus, we either have û(0) ≥ ŵ(0) ≥ 0 or û(0) < ŵ(0) ≤ p. If û(0) ≥ ŵ(0) ≥
0, then we can reassign at most

√
p log p of the values of u(m) from 1 to 0

until we get
û(0) = ŵ(0) + δ, 0 ≤ δ < 1, (10)

and
û(a) = ŵ(a) + O(

√
p log p) (11)

for all the other values a = 1, 2, ..., p − 1. If û(0) < ŵ(0) ≤ p, then we can
likewise reassign at most

√
p log p of the values of u(m) from 0 to 1 until we

get (10) and (11) to hold.
Thus, we have constructed a function u(m) which satisfies the conclusion

of our lemma. �

Now let S′ denote the set for which u(m) is the indicator function. Then,
from the conclusion of Lemma 2 and (7) we have that for some 0 ≤ δ < 1,

|S′| = û(0) = ŵ(0) + δ = κ−1|S| + δ, where 0 ≤ δ < 1. (12)

We now estimate the number of three-term arithmetic progressions con-
tained in S ′ modulo p; this number is

1

p

p−1
∑

a=0

û(a)2û(−2a) =
1

p

p−1
∑

a=0

(

ŵ(a) + O(
√

p log p))2(ŵ(−2a) + O(
√

p log p)
)

=
1

p

p−1
∑

a=0

ŵ(a)2ŵ(−2a) + E, (13)

where

E � log p√
p

p−1
∑

a=0

(

p log2 p + |ŵ(a)|√p log p + |ŵ(a)|2

+ |ŵ(a)ŵ(−2a)| + |ŵ(−2a)|√p log p
)

.

From Parseval’s identity we know that

p−1
∑

a=0

|ŵ(a)|2 = p

p−1
∑

n=0

w(n)2 ≤ p2.

From this and the Cauchy-Schwarz inequality we then deduce that

E = O
(

p
√

p log3 p
)

;
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and so it follows from this and (8) that the number of three-term arithmetic
progressions in S ′ modulo p is

1

p

p−1
∑

a=0

ŵ(a)2ŵ(−2a) + O
(

p
√

p log3 p
)

=
1

κ3p

p−1
∑

a=0

Ŝ(a)2Ŝ(−2a)
P̂ 2

0 (a)P̂0(−2a)

|P0|3
+ O(p

√
p log3 p).

(14)

We now write this last sum as Σ′
1 + Σ′

2, where Σ′
1 is the sum over 0 ≤

a ≤ p − 1 satisfying (1), and Σ′
2 is the sum over the remaining values of a.

Now, for each a satisfying (1) and for each n ∈ P0 we have from (5) and (4)
with K = 2L that

∣

∣

∣

∣

∣

∣

∣

∣

−2an

p

∣

∣

∣

∣

∣

∣

∣

∣

≤ 2

∣

∣

∣

∣

∣

∣

∣

∣

an

p

∣

∣

∣

∣

∣

∣

∣

∣

<
2

logL p
.

for p sufficiently large. Thus,

P̂0(−2a)

|P0|
=

1

|P0|
∑

n∈P0

e2πi(−2an)/p

=
1

|P0|
∑

n∈P0

(

1 + O

(

1

logL p

))

= 1 + O

(

1

logL p

)

and the same estimate holds for P̂0(a)/|P0|. Thus, we conclude that

Σ′
1 = Σ1 + O

(

1

logL p

) p−1
∑

a=0

|Ŝ(a)|2|Ŝ(−2a)|

= Σ1 + O

(

p

logL p

p−1
∑

a=0

|Ŝ(a)|2
)

= Σ1 + O

(

p3

logL p

)

.

The last line here follows from Parseval’s identity.
We also have the estimate

|Σ′
2| ≤ p log log p√

log p

∑

0≤a≤p−1

|Ŝ(a)|2 ≤ p3 log log p√
log p

,
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the second inequality following from Parseval’s identity.
Combining our estimates for Σ′

1 and Σ′
2 together with (14) and (2), we

deduce that the number of three-term arithmetic progressions in S ′ modulo
p is

1

κ3p

(

Σ′
1 + Σ′

2

)

+ O(p
√

p log3 p) =
1

κ3p
(Σ1 + Σ2) + O

(

p2 log log p√
log p

)

.

Thus, if we let P(A) denote the number of three-term arithmetic progres-
sions modulo p in a set A, then we have that

P(S′) =
1

κ3
P(S) + O

(

p2 log log p√
log p

)

. (15)

We now proceed to show that this is impossible, and from our chain of
reasoning above, this would mean that (6) holds for some m, which would
prove our theorem.

To show that (15) cannot hold, we require the following combinatorial
lemma, which is proved using the probabilistic method, in combination with
the second moment method.

Lemma 3 Suppose A,B ⊂ Z/pZ have densities γ and δ, respectively; and,
suppose that A and B contain αγ3p2 and βδ3p2 non-trivial three-term arith-
metic progressions 2, respectively. Then, there exists a subset C of Z/pZ

having density at least
γδ + O(p−1/4),

such that the number of non-trivial three-term arithmetic progressions lying
in C modulo p is at most

αβ(γδ)3p2 + O(p3/2).

Here the implicit constants depend on α, β, γ and δ only.

Remark. The same result holds if we add in trivial three-term arithmetic
progressions, since a subset D of Z/pZ can have only O(p) trivial three-term
arithmetic progressions, which is well within the remainder term O(p3/2).

Proof of Lemma 3. We will find a pair of integers u, v such that
A∩(uB+v) has the desired properties. First, we show that this intersection

2The condition on the number of three-term arithmetic progressions in A and B is
saying the following. A “typical” subset A (or B) of the integers modulo p having density
γ (or δ) should have γ3p2 (or δ3p2) three-term arithmetic progressions. Thus, the factors
α and β gauge how far away from this expected number the sets A and B stray.
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has density very close to γδ for almost all 0 ≤ u, v ≤ p−1, by using a second
moment argument. Let u and v be independent random variables, with
u taking values from {1, 2, ..., p − 1}, each value attained with probability
1/(p − 1), and with v taking values from {0, 1, ..., p − 1}, where each value
is attained with probability 1/p. Then, the variance V (|A ∩ (uB + v)|) is

E(|A ∩ (uB + v)|2) − E(|A ∩ (uB + v)|)2.

To compute the first expectation we express the intersection as a sum of
indicator functions:

|A ∩ (uB + v)| =
∑

b∈B

A(ub + v).

So, we have that

E(|A ∩ (uB + v)|2) =
∑

(b,b′)∈B×B

E(A(ub + v)A(ub′ + v))

=
1

p(p − 1)

∑

(b,b′)∈B×B

∑

1≤u′≤p−1

0≤v′≤p−1

A(u′b + v′)A(u′b′ + v′).

Now, given an ordered pair (b, b′) of unequal elements of B, and given an
ordered pair (a, a′) ∈ A × A of unequal elements of A, there is exactly one
pair of numbers u′, v′ (mod p), 1 ≤ u′ ≤ p − 1, 0 ≤ v′ ≤ p − 1, satisfying
u′b+v′ ≡ a (mod p) and u′b′+v′ ≡ a′ (mod p). If we allow a = a′ here, then
for this case we would have to have u′ = 0 in order that u′b + v′ = a = a′ =
u′b′ +v′. We conclude that if b′ 6= b, then there are exactly |A|(|A|−1) pairs
u′, v′, 1 ≤ u′ ≤ p− 1, 0 ≤ v′ ≤ p− 1, which make A(u′b+ v′)A(u′b′ + v′) 6= 0
(and therefore equal to 1). Thus,

E(|A ∩ (uB + v)|2) ≤ γp(γp − 1)δp(δp − 1)

p(p − 1)
+ |B| = γ2δ2p2 + O(p).

(The term |B| comes from those pairs b, b′ with b = b′. )
To estimate E(|A ∩ (uB + v)|), we note that for any fixed b ∈ B and

1 ≤ u ≤ p− 1, the probability that ub + v lies in A is γ. Thus, the expected
size of this intersection is γδp.

We now conclude that

V (|A ∩ (uB + v)|) = O(p);
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and so, by an application of Chebychev’s inequality we conclude that

Prob(|A ∩ (uB + v)| < (1 − ε)γδp) = O

(

1

ε2γ2δ2p

)

.

Next, we compute the expected number of three-term arithmetic pro-
gressions in the intersection A∩(uB+v): Let Q = Q(u, v) be the number of
non-trivial three-term arithmetic progressions lying in A ∩ (uB + v). Now,
suppose that x1, x2, x3 is a non-trivial three-term arithmetic progression in
A, so that x2 ≡ x1 +d, x3 ≡ x1 +2d (mod p), for some d 6≡ 0 (mod p); and,
suppose that y1, y2, y3 is a non-trivial three-term arithmetic progression in
B. Then, there is exactly one pair (u′, v′), u′ ∈ {1, ..., p−1}, v′ ∈ {0, ..., p−1}
such that

For i = 1, 2, 3, u′xi + v′ ≡ yi (mod p).

Thus, the probability that a particular non-trivial three-term arithmetic
progression in A also lies in uB + v is

βδ3p2

p(p − 1)
= βδ3 + O(1/p);

and so, the expected size of Q is αβ(γδ)3p2 +O(p). So, there can be at most
p2−p3/2 of the choices for u′ and v′ such that the intersection A∩ (u′B +v′)
has more than αβ(γδ)3(p2 + 2p3/2) three-term arithmetic progressions; for
otherwise, the expectation of Q would exceed

(p2 − p3/2)(p2 + 2p3/2)

p(p − 1)
αβ(γδ)3 = αβ(γδ)3(p2 + p3/2 + O(p)),

which we know is not the case. Thus, the probability that Q < αβ(γδ)3(p2+
2p3/2) is at least 1−(p2−p3/2)/(p(p−1)) = p−1/2+O(1/p). So, for ε = cp−1/4,
for a certain constant c > 0 depending on γ and δ, we get that with a positive
probability, both

|A ∩ (uB + v)| ≥ (1 − ε)γδp and Q < αβ(γδ)3(p2 + 2p3/2)

hold. So, there is a choice for u and v so that both these events occur, which
proves the lemma. �

We require one more lemma and a corollary of a result of Varnavides
[16] before we can prove that (15) is impossible.

Lemma 4 Given 0 < θ < 1/2, for any sufficiently large prime p there exists
a subset U ⊂ Z/pZ having density 1 − θ + O(1/p) such that the number of
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three-term arithmetic progressions in U , both trivial and non-trivial, is at
most

p2(1 − 3θ + 2.5θ2) + O(p) < p2(1 − θ)3(1 − θ2/2).

Proof. In fact, we just let U be the integers in the interval [0, (1 − θ)p]. 3

Then, U will have density 1 − θ + O(1/p). Now, let U ′ = (Z/pZ) \ U ,
and observe that for a 6≡ 0 (mod p), Û(a) = −Û ′(a), and Û(0) = p −
Û ′(0). Thus, the number of triples (u, v, w) that lie in either U 3 or in (U ′)3,
satisfying u + v ≡ 2w (mod p), is

1

p

p−1
∑

a=0

(

Û(a)2Û(−2a) + Û ′(a)2Û ′(−2a)
)

=
Û(0)3 + Û ′(0)3

p

= (1 − 3θ + 3θ2)p2 + O(p).

Now, for 0 < θ < 1/2, the number of triples (u, v, w) ∈ (U ′)3 satisfying
u + v ≡ 2w (mod p) is just the number of pairs (u, v) ∈ (U ′)2 of the same
parity. There are θ2p2/2 + O(p) such pairs; and so, the number of triples
(u, v, w) ∈ U 3 satisfying u+v ≡ 2w (mod p) is (1−3θ+2.5θ2)p2 +O(p). Up
to an error of O(p) this will also equal the number of non-trivial three-term
arithmetic progressions in U . �

The result of Varnavides is as follows.

Theorem 2 Given 0 < α ≤ 1, there exists 0 < c ≤ 1 such that for any
integer x ≥ 1 and any set T ⊆ {1, 2, ..., x} having |T | ≥ αx,

#{(u, v, w) ∈ T 3 : u + v = 2w} > cx2.

Corollary 2 There exists 0 < c ≤ 1, depending only on σ (the lower bound
for the density of S), such that P(S) > cp2.

The proof of this corollary is immediate, since if we think of S as a set
of integers, say S ⊆ {0, 1, ..., p − 1} (instead of as a set of residue classes
modulo p), then every solution to a+ b = 2c, a, b, c ∈ S in the integers gives
a solution a + b ≡ 2c (mod p). So, the number of three-term arithmetic
progressions in S modulo p is at least the number of three-term arithmetic
progressions in S, when we think of it as a subset of the integers.

3This is a little counterintuitive, since we know that short intervals [0, εp] contain more
arithmetic progressions that a “typical” subset of Z/pZ of density ε; but, when ε is near
to 1, this is not the case!
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Now we let θ = 1 − κ, and let U be the set given by Lemma 4. Then,
we apply Lemma 3 with A = U , and B = S ′, and we deduce from (12) and
our assumption (15) that there is a set C with

|C| ≥ |U ||S ′|p−1 + O(p3/4)

= (κp + O(1))(κ−1|S| + O(1))p−1 + O(p3/4)

= |S| + O(p3/4),

such that the number of three-term arithmetic progressions in C is at most

κ3

(

1 − (1 − κ)2

2

)(P(S)

κ3
+ O

(

p2 log log p√
log p

))

+ O(p3/2)

= P(S)

(

1 − (log log p)2

2
√

log p

)(

1 + O

(

log log p√
log p

))

= P(S)

(

1 − (log log p)2

2
√

log p
+ O

(

log log p√
log p

))

.

Note that Corollary 2 is what allowed us to absorb the error terms.
To show that this is impossible for sufficiently large p, we let C ′ be any

set obtained from C by adding at most O(p3/4) elements so that

|C ′| ≥ |S|.

Then, in the worst case, each element we add to C (to produce C ′) adds at
most O(p) new three-term arithmetic progressions. Thus,

P(C ′) = P(C) + O(p1.75)

< P(S)

(

1 − (log log p)2

2
√

log p
+ O

(

log log p√
log p

))

.

(16)

Finally, (16) contradicts the fact that S is a critical set: we have con-
structed a set C ′ having at least as many elements as S, but having fewer
three-term arithmetic progressions than S. �
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