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1 Introduction

Here I will explain how to use the Rayleigh principle to find the eigenvalues
of a matrix A. Recall that given a symmetric, positive definite matrix A we
define

T Ax

Ty

R(x) =

Here, the numerator and denominator are 1 by 1 matrices, which we interpret
as numbers.

2 Scaling

The first principle for finding R(z) that I want to mention is scaling. Ba-
sically, what I mean is that as far as minimizing (or maximizing) R(x) is
concerned, we can restrict ourselves to z’s such that ||x|| = 1; for example,

min R(z) = min R(z).

z ll|[=1

Why is this so? Well, suppose that x is any vector which minimizes R(z),
say © = (r1,...,2,), and let ¢ = 2§ + -+ + 22 = ||z[|*>. Then, consider the
vector

Yy = (Y1,-Un) = (m1/c,22/c,...;x/c) = x/ec.

Then,
i
Iyl = 2= = 1.



Also, note that
_ xT Ax _ (1/c*)aT Ax _ (z/c)T A(z/c) _ yT Ay
ale (1/c*)aTx (z/c)"(x/c) y'y

We may likewise restrict ourselves to vectors y which satisfy any con-
straint such as

= R(y).

ayi+-+ay: = ¢ > 0.
By that I mean the following:

H%cin R(I‘) - y=(£r1171{l,yn) R(y)

a1yd+-+anyd=c

3 The values of R(x)

Since A is symmetric we know that it has all real eigenvalues

A< A < s <A

What are the possible values that R(z) can take on in terms of these
eigenvalues? Well, we first observe that since A is symmetric we know that

A = QTAQ,
where A is diagonal and (@) is orthogonal. So,

vT Az (Qr)"A(Qx)

0= S = Qom@n)
The denominator is (Qz)T(Qz) = ||Qz||? = ||z||* = 2T 2.
So,
pigray - QEINQQT) _ Ar Ak

(QQT2)"(QQ"x) xTx 234 a2

Now, if we call the vector y = Q7x, then we have

Mad + -+ Al
i+ +ak

R(y) =



Now we use scaling: We can suppose that 2 + - -- + 22 = 1; and so, the
values attained by R(y) are the values

Mt 4+ Az, where o3 4 -+ 22 = 1.

n

Obviously, these values R(y) lie in [A1, \,] (as can be seen by setting x =
(1,0,0,...,0) and x = (0, ...,0, 1), respectively). The minimium is obviously
A1, which is the smallest eigenvalue. Thus, we have proved the Rayleigh
Principle:

min R(x) = ;.

xT

4 Ellipsoids

Here we think about the eigenvalues \; in terms of axes of a certain ellipsoid,
which is a generalization of an ellipse. For us and ellipsoid centered at the
origin will by the set of vectors x = (z1, ..., z,,) satisfying

&1$%+"‘+an$i = 1,
where
0 < a1 <a<---<a,.

The points on this ellipsoid furthest from the origin form the major axis
(connect these points to form a line segment — that segment is the major
axis), and the points on the ellipsoid closest to the origin form the minor
axis (here, we are implicitly assuming that we have strict inequality a; < as
and a,_1 < a,). So, the points on the ellipsoid that are also on the major

axis are
(:I:lA/aT,0,0, ., 0),

and the points on the ellipsoid that are on the minor axis are

(0,...,0,£1//ay).

Let us now see what this means in terms of the Rayleigh quotient: From
the previous section we have that

a4 -+ Al

R =
(v) 224t a2




If we assume A is positive definite (as well as symmetric), then these A; > 0.
By scaling, we may restrict our attention to vectors x satisfying

Mz 4 A2 = L

If we do this, then if we let let x be any of the two vectors on the major axis
of this ellipsoid, that is

r = (£1//\,0,...,0),

we will have
R(y) = A,

the smallest eigenvalue. Likewise, if we let  be any of the two vectors on
the minor axis, that is

r = (0,.,0,£1/y/\),

we will have

the largest eigenvalue.
The ellipsoid
Mad 4ot dad = 1

has other axes besides the minor and major ones, and these correspond to
the other eigenvalues of A.

5 Planar Slices

Suppose we take a planar slice through this ellipsoid, where the plane passes
through the origin. How does the Rayleigh quotient vary over this bit of the
ellipsoid?

Well, a planar slice where the plane passes through the origin can be
described as the set of all vectors x such that

where z is a vector perpendicular to this plane. In particular, we would like
to know the value of
min R(z). (1)

2T 2=0
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This minimum must be at least as large as

min R(x) = ;.
Can we get an upper bound on (1) as well? The answer is ‘YES’, and perhaps
the best way to see this is to work with R(y): If, as before, we have y = QT x,
then
Mt 4+ A

min R = min R = min
yTZIZO (y> xT(le)ZO (y) 2T (Qz)=0 LU% + 4 SL’%

So, if we let 2’ be the vector Qz, then we seek

D S SR S Wt
o 22+t
= (Z)= 1 n

By scaling we can assume that

it = 1

If we do this, then we seek

Tr?i? Ma? + -+ Nz, subject to 2? + -+ 22 = 1.
zt(2")=0

There is at least one vector of the form
v = (11,15,0,0,...,0), such that z7(z') = 0 and 2} + 23 = 1.
To see this, if 2/ = (ay, ..., a,), then these conditions translate into
Tiay + r9a; = 0, and 2% + 25 = 1. (2)

The first condition gives all points (x1,x2) on a line passing through the
origin, unless (ay, az) = (0,0), in which case it consists of all vectors (z1, z3).
The second condition gives all points (z1,x2) on a circle. There clearly are
exactly two points (x1,x2) that satisfy both of these if (a1, a2) # (0,0) (a
line crosses the circle in two places). Let (wi,ws) be one of these points of
intersection. Then, for any vector z

min R(z) < A\w? + dows < . (3)

zT2=0



6 The Minimax Principle for the Second Largest
Eigenvalue

Here we begin with the following basic question: Is there a vector z for which
the upper bound of A\, in (3) is attained? The answer is yes, as we will see.

If we could force (wy, wy) = (0,1), then we would get this upper bound \,.
How can we do this? Basically, if we had that 2’ = (a4, ..., a,) = (1,0,0,...,0)
then the only solutions (z1,x2) to (2) would be

(.C(Il, LUQ) = (O, :l:l)

Both these solutions give us an z = (0, £1,0, ..., 0) such that R(y) = \2. But
1s
min R(y) = A 7

zT (2")=0

Indeed it is, because
27 (2) = 0 implies = = (0, z, T3, ..., Tp,),
and then if we use scaling we get

min R(z) = min M\t + Aoy -+ A2t
IET(Z,):O z=(0,z9,..., zn)
a? a3+ +ad=1
= rnin2 AoTs + -+ Ap22.
5+ txn=1
This last minimum is clearly Ao, and is attained when zo =1 and x3 =--- =
z, = 0.
So, we must have that
max min R(z) = Ao (4)
z  zTz=0
To say that 272 = 0 means that z lies in the orthogonal complement of
z, which is an (n — 1)-dimensional subspace. Thus, we may rewrite (4) as
max minR(z) = .
dim(S)=n—1 z€S
This is saying “As is the maximum over all n — 1 dimensional subspaces S of
the minimum of all = in that subspace S.”
If we generalize the arguments of this section and the previous section
further, then we can prove that for all j =0,1,....,n —1,

max minR(x) = Ay,
dim(S)=n—j z€S ( ) I+



7 A Dual Version of the Inequality
Now we turn things around. We wish to determine

min max R(x),
dim(S)=j5 z€S

which equals

: . A+ N
min max R(y) = min max —; ",
dim(S’):j resS’ dim(S’):j zeS! xl 4+t I,n

A vector x belongs to S’ means that x is orthogonal to some subspace of
dimension n — j; this subspace T' is the orthogonal complement of S’, and
has a basis by, ..., by—;.

We claim that S’ contains a vector x of the form x = (0,0, ..., 0, a1, ..., G j1+1);
that is, S’ contains a vector x orthogonal to the j — 1 basis vectors

er = (1,0,...,0), es = (0,1,0,...,0), ..., e;_y = (0,0,...,1,0,...,0);

that is, there exists a vector x € R™ which is orthogonal to 7" and or-
thogonal to ey, ...,ej_1; that is, there exists a vector x € R™ orthogonal
to e1,...,ej_1,b1, ..., bp—j. Such a vector & must exist since to say that z is
orthogonal to these vectors is equivalent to saying that there exists a vector
x such that

Cx = 0,

where the rows of C' are the vectors ey, ..., b,_;. Since C has n — 1 rows and
n columns, a non-zero solution x must exist.

Now, if S’ contains such an z, it contains all multiples of z, and in par-
ticular, it must contain a muliple of the form 2" = (0,0, ...,0,a}, ...,a;,_; ;)
satisfying

2 2
(a))* 44 (an_j1)" = 1.

But then we will have



We now see that there exists a subspace S’ for which equality is attained;
that is,

max R(y) = A;.

Basically, we take S’ to be the subspace generated by ey, ...,e;. Then, all
x € S have the form (ay,as, ..., a;,0,...,0). Consider all such vectors where
af 4 ---+a? = 1. For any such x we have

R(y) = \iai + -+ Nja? < A
In fact, this holds for all z € S’, not just those having norm 1. So,

< X\
max B(y) < A,

which combined with (5) gives

= A\
max R(y) j
It follows that
Iréin I:?e%i( R(z) = ;.
8 Examples
Example 1. Suppose that
1 2
i-[12)
Note that this matrix is symmetric and positive definite.
The matrix has eigenvalues A\ = —1 and Ay = 3. We also know that
in R =\ = —1.
e o) =X

Find a vector z for which R(z) = —1.

Solution. In Section 3 we determined that by taking x = (1,0,0,...,0)
we minimize R(y). Well, basically, what this is saying is that if z is the
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eigenvector associated to A = 1, then we minimize R(z), and get the value
R(z) = X\ = 1. So, we just need to find that eigenvector: We seek x so that

2 2
0= A+ = [2 2}:17.
Clearly, x = [1 —1]T is our eigenvector.
Let us check that this indeed gives R(z) = —1: We have

o = S0 S0

Example 2. Suppose that

1 3
31
This matrix is symmetric, positive definite, and has eigenvalues A\; = —2 and
AQ ::4.
We know that
max min R(z) = Ao

z  xT2=0

Find a vector z such that

min R(x) = .

T 2=0

What is the vector x which achieves this minimum?

Easy Solution. First, we give a solution which does not rely on what we
have said in the previous sections (actually, it does rely on what we did
previously, although here I will not change from x coordinates to y = Q”x
coordinates): We observe that since A is diagonalizable, all of R? can be
described as aiv; + asve, where v; and vy are the eigenvectors of A. Now
suppose we take z = v;. Then, the set of vectors z satisfying 272 = 0 are
those in the orthogonal complement of v;. Since A is symmetric, we know
that the eigenvectors are all orthogonal to each other; and so, the orthogonal
complement of subspace spanned by v; is the subspace spanned by vs. So,



say 7z = 0 is the same as saying = = ayvs, for some scalar as. For any such
vector x # 0 we will have

aeT(Az)  xT(4x)
Tr 2Tz

R(z) = — 4=

A Solution Using Previous Sections. From the ideas in section 6 we
know that if we set 2’ = (1,0), then R(y) > ), for all x satisfying 272" = 0;
moreover, if we take z = (0,1) then R(y) = \s. Recall that y = Q7.

As y = QTz (so, z = Qy), we have that 272" = 0 is equivalent to saying
y7(QT2') = 0. Recall that Q7 is the matrix of eigenvectors of A. So, we have
that QT2 = QT[1 0]7 = vy, the eigenvector associated to A\; = —2.

What we have then is that if we pick 2 = QT2 = vy, then R(y) > ), for
all yTz = 0.

Furthermore, we know that equality here is achieved when z = (0, 1); in
other words, y = QT2 = vy, the eigenvector associated to \y = 4.

Example 3. Suppose that A is the same matrix as in example 1. We know
that R(x) assumes all values between \; = —2 and Ay = 4. So, in particular,
there must be a non-zero vector z such that R(x) = 0. Find that vector z.

Easy Solution. We know that a vector x € R? can be written as = a;v; +
asvy. Since v; and vy are orthogonal, we know that o7z = a3||vy||* + a3 |va|]?.
Now,

2T (Ax) 27 (—=2a,v; + dayvs) _ —2af||v1]|? + 4a3||ve]?

Ra’/‘ = = =
@ = = T AP r@mE - @l @l

To say that R(x) = 0 is equivalent to having the numerator vanish; so, we
seek a; and as so that

das||wal|* = 2a3]|vi[*.

That is,
az |[o]]

a2

We just need to know the eigenvectors v; and ve: We know that (A +

21)v; = 05 so,
3 3
|:3 3:|’Ul = 0.
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It follows that v; = [1 — 1]7. We also have (A — 41)vy = 0; so,

-3 3
|:3 _3:|,U2_07

which means that v, = [1 1]7. So, ||v1]| = ||v2|| = V2, and therefore

Qo 1
2 =4+
aq \/5

If we take a; = v/2 and as = 1, then we have
=V +vy = [(1+ \/5) (1-— \/5)]T

Let us check: We have that

Ay = ﬂ[j;i\\g} = (14 V)4 2V2) + (1 - V2)(4+2V2)

= 0.
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