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Abstract

We present an algorithm to invert the Euler function ϕ(m). The algorithm, for a
given integer n ≥ 1, in polynomial time “on average”, finds the set Ψ(n) of all solutions
m to the equation ϕ(m) = n. In fact, in the worst case the set Ψ(n) is exponentially
large and cannot be constructed by a polynomial time algorithm. In the opposite
direction, we show, under some widely accepted number theoretic conjecture, that the
Partition Problem, an NP-complete problem, can be reduced, in polynomial time, to
the problem of deciding whether ϕ(m) = n has a solution, for polynomially (in the
input size of the Partition problem) many values of n. In fact, the following problem
is NP-complete: Given a set of positive integers S, decide whether there is an n ∈ S
satisfying ϕ(m) = n, for some integer m. Finally, we establish close links between the
problem of inverting the Euler function and the integer factorisation problem.

1 Introduction

In this paper we study the complexity of a new number theoretic problem, namely the
complexity of inverting the Euler function ϕ(m), which, as usual, for an integer m ≥ 1, is
defined by

ϕ(m) = #(Z/mZ)× =
∏

pα ‖m

pα−1(p − 1).

It is widely believed that computing the Euler function is equivalent to the integer
factorisation problem. Moreover, let P2 denote the set of positive integers n which are
products of two distinct primes p and q (with the additional condition p ≡ q ≡ 3 (mod 4)
such numbers are often called Blum integers). Then for n ∈ P2 finding ϕ(n) is indeed
equivalent to factoring n. Here we concentrate on the dual question of inverting the Euler
function, which apparently has not yet been addressed in the literature. More precisely,
given an integer n ≥ 1, we want to find the set Ψ(n) of all integer solutions m ≥ 1 to the
equation ϕ(m) = n.

1



Here we design an algorithm which solves this problem in exponential time in log n
in the worst case, and in polynomial time for “almost all” n (provided the prime number
factorisation of n is given). Because for infinitely many n the cardinality of Ψ(n) is
exponentially large, any algorithm for inverting ϕ must run in time exponential in log n
in the worst case (or nearly exponential). Indeed, from the proof of Theorem 4.6 of [14]
we see that for infinitely many n,

#Ψ(n) ≥ nγ+o(1)

where γ > 0 is any constant such that for any sufficiently large X there are at least X 1+o(1)

primes p ≤ X such that all prime divisors of p − 1 are less than X 1−γ (see also [13]). By
Theorem 1 of [3] one can take γ = 0.7039.

A natural question is whether the decision problem for inverting ϕ is any easier. We
recall that n is called a totient , if there exists an integer m satisfying ϕ(m) = n. Given
an integer n, and its prime factorization, how efficiently can we determine whether n is a
totient? Because the output of any algorithm solving this problem need only be a single
bit, we cannot so easily say that the running time must be exponential in log n, as we
did in the case of determining all the solutions m. We prove in Section 4 the somewhat
surprising result that, assuming a certain strong form of the famous Hardy–Littlewood

prime k-tuplet conjecture (in the case k = 2), there is a polynomial time reduction from
the Parition Problem, an NP-complete problem, to the question of whether ϕ(m) = n
has a solution for a certain small set of integers n. In particular this shows that the
following problem is NP-complete (assuming the Hardy–Littlewood conjecture): Given a
set of integers S, determine whether it contains a totient. Although at the present time
the Hardy–Littlewood conjecture is out of reach, there are a number of results in this
direction which leave little doubt that the conjecture is correct, for example, see [4].

Furthermore, in Section 5 we obtain an unconditional reduction from the problem of
factoring integers n ∈ P2 to that of inverting the Euler function. As we have remarked,
any polynomial time algorithm to compute the Euler function leads to a factorization
algorithm for integers of the form n = pq where p and q are primes. Here we prove a
somewhat dual statement by showing that any polynomial time algorithm to invert the
Euler function (in the sense that the running time is (#Ψ(n) + τ(n) + log n)O(1) ), where
the factorization of n is not given, leads to a probabilistic polynomial time factorisation
algorithm for n ∈ P2. This result is certainly weaker than that of Section 4 but is not
based on any unproven assumptions.

The growth, distribution in arithmetic progressions and in other special sets of elements
of the values of the Euler function, and many other similar questions, have extensively
been studied in the literature, see [5, 6, 9, 10, 11, 12, 13, 14] and references therein.
Nevertheless the considered here questions seem to be new and have never been studied.
We also remark that analogues of our results can be obtained for the sum of divisors
function σ(m) and for several more similar number theoretic functions.

2 Notation

We use ω(m) and τ(m) to denote the total number of distinct prime and positive integer
divisors of a positive integer m, respectively (we also define ω(1) = 0, τ(1) = 1).

We also use the Vinogradov symbols �, �, � as well as the Landau symbols O and o
with their regular meanings (we recall that U � V and U = O(V ) are both equivalent to
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the inequality |U | ≤ cV with some constant c > 0 and U � V is equivalent U � V � U).
The implied constants in the symbols O, �, � and � are always absolute unless indicated
otherwise.

3 Constructing Ψ(n)

Our algorithm to find Ψ(n) makes use of the prime power factorization of n. If we were
to modify our algorithm to find Ψ(n) where the factorisation of n is not given, but is first
found by using a probabilistic factoring algorithm (see [8]), then for most integers n, fac-
toring would dominate the overall complexity of the algorithm. In the worst case, however,
where Ψ(n) is “large”, the running time of the rest of the algorithm would dominate this
factoring step. For our algorithm, we simply assume that the prime number factorisation
of n is given, which has the additional advantage of making our algorithm deterministic
(while making factoring n a part of the algorithm would make it probabilistic).

Theorem 1. There exists a deterministic algorithm which given the prime number fac-

torisation

n = pα1

1 . . . pαs
s

of an integer n ≥ 2, constructs Ψ(n) in time

T (n) ≤ (#Ψ∗(n) + τ(n) + log n)O(1) ,

where

Ψ∗(n) =
⋃

d|n

Ψ(d).

Proof. Basically, we give an algorithm which efficiently finds all representations of n of
the following type:

n =
k

∏

j=1

`
γj

j (`j − 1),

where `1 < · · · < `k are primes, and where γ1, . . . , γk ≥ 0 are integers. Each such
representation corresponds to a solution ϕ(m) = n, where

m =
k

∏

j=1

`
γj+1
j .

Our algorithm is iterative and builds a graph, where all the vertices on the jth level
correspond to a certain list Ej, and where each solution m to ϕ(m) = n corresponds to
some path from a vertex back to the top list E1, although not all such paths correspond
to such a solution. The vertices in each of these lists are assigned a certain value, which
is an ordered pair of the form (`j, γj), where `j is prime, and where γj ≥ 0 is an integer.

Given an integer n, we let D(n) denote the set of divisors of n. If we are given the
prime power factorisation of n, then we can easily construct the set D(n) in time τ(n)O(1).

We now describe E1: We let E1 be a set of vertices, one for each ordered pair (`1, γ1),
where `1 is a prime, and γ1 ≥ 0, such that the number e = `γ1

1 (`1 − 1) lies in D(n); that
is, e|n. We also remark that for every e there are at most two possible pairs (`1, γ1). The
vertices in this list are not be linked to each other, but are each doubly linked to entries
of the yet to be mentioned list E2.
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The list E2 is created as follows: We scan through E1, and for each vertex v in E1,
having the value (`1, γ1), we consider the integer n0 = n/`γ1

1 (`1 − 1). Then, among the
integers d0 ∈ D(n0) (divisors of n0), we locate all those corresponding to vertices v ∈ E1

having value (`, γ), with ` > `1; that is, d0 = `γ(` − 1). In this way, we run through all
the divisors d of n of the form

d = `γ1

1 (`1 − 1)`γ(` − 1), `1 < ` are prime.

The list E2 then consists of one vertex for each of these different ordered pairs (`, γ), for
each of the vertices v ∈ E1; and, this vertex is doubly linked to its ancestor v ∈ E1.

We note that each vertex in E2 has a unique ancestor; and, different vertices in E2 may
have the same value (`2, γ2).

In general, suppose we have constructed the list Ej . Then, the list Ej+1 is constructed
as follows: By running through the vertices v ∈ Ej , and then considering the unique path
from v back to its ancestors in Ej−1, Ej−2, . . . , E1, we get that these vertices (along with v)
correspond to a sequence of ordered pairs (`j , γj), . . . ., (`1, γ1), which represents a divisor
d of n of the form

d =

j
∏

i=1

`γi

i (`i − 1), `1 < `2 < · · · < `j are prime.

We let n0 = n/d, and then we scan through the set D(n0), looking for elements of the
form `γ(` − 1), where ` > `j is a prime number. We then add a vertex to Ej+1, assign it
the value (`, γ), and doubly link it to the vertex v ∈ Ej. After we have done this for all
these ordered pairs (`, γ) generated by considering all v ∈ Ej, the construction of Ej+1 is
completed.

We continue constructing these lists, until we reach a list Et having no children. Since
n has O(log n) prime power factors, and since each new level in the graph corresponds to
a string of divisors d1, . . . , dt where d1 · · · dt|n, we conclude that t = O(log n).

It is obvious that each path from a vertex back to E1 along its unique ancestors in the
graph corresponds either to a proper divisor

d =
h

∏

j=1

`
γj

j (`j − 1), `1 < `2 < · · · < `h are prime

of n such that there is no pair (`, γ), ` > `h prime, γ ≥ 0, with `γ(` − 1)d|n; or, we have
that d = n. Now, if d = n, then d corresponds to the solution

m =

h
∏

j=1

`
γj+1
j

of ϕ(m) = n. Thus, by considering the paths from vertices corresponding to n back to E1

corresponding to d = n, we obtain the set Ψ(n).
Finally, it is obvious that the running time of the algorithm is proportional to

(L + τ(n) + log n)O(1),

where L is the number of paths throughout the above graph which is #Ψ∗(n).

To address the average performance of the algorithm, we require the following bound:
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Theorem 2. The bound following bound holds:
∑

n≤x

#Ψ∗(n) � x log x.

Proof. We have that

∑

n≤x

#Ψ∗(n) =
∑

n≤x

∑

d|n

#Ψ(d) ≤ x
∑

d≤x

#Ψ(d)

d
. (1)

Now,
∑

d≤x

#Ψ(d) = #{n ≥ 1 : ϕ(n) ≤ x} =

(

ζ(2)ζ(3)

ζ(6)
+ o(1)

)

x,

see [7]. So, by partial summation, we conclude that

∑

d≤x

#Ψ(d)

d
= O(log x),

which, together with (1) finishes the proof.

An almost immediate corollary of Theorem 2, together with the well known bound
∑

n≤x

τ(n) = O(x log x), (2)

see Theorem 2 in Section I.3.2 of [15], and Theorem 1, is the following:

Corollary 3. For every A > 0, there exists B > 0, so that for all but at most O(x/ logA x)
integers n ≤ x we have that the algorithm in Theorem 1 finds Ψ(n) in time logB n.

4 NP-completeness of Totient Testing

A natural question is whether it is any easier to decide if, given n, there exists an integer
m satisfying ϕ(m) = n. In this section we prove that the problem of deciding whether
a set of integers S contains a totient, is NP-complete, if we assume the following strong
form of the Hardy–Littlewood prime k-tuplet conjecture, see [4] for several results in this
direction.

Conjecture 4. There exists an integer A > 0 such that the following holds: Suppose that

(M1x+a1)(M2x+a2) has no fixed prime divisors as x runs through the integers, and that

M1,M2 > 0, and 0 ≤ ai < Mi for i = 1 and 2. Then, there exists an x < logA(M1M2 +1)
such that both M1x + a1 and M2x + a2 are prime.

We first note that the decision problem is in NP, since if we let L be the language
consisting of all finite subsets of the natural numbers which contain a totient, then we
have: For each S ∈ L, suppose n ∈ S is a totient. Then, there exists a string s, of
length logO(1) n, which we can use to verify that S ∈ L in polynomial time, namely if s
is the prime power factorization of any solution m to ϕ(m) = n (and, given the prime
power factorization of m, it is easy to compute ϕ(m)). Since we can check whether a
number is prime in polynomial time, and therefore check that s is a legitimate prime
power factorization in time logO(1) m, we conclude that L is in NP.

The problem which we reduce to our decision problem is the following variant of the
subset sum problem, which is known to be NP-complete.
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Partition Problem: Given 2k ≥ 2 nonnegative integers x1, . . . , x2k, where
S = x1 + · · · + x2k is even, decide whether there exist 1 ≤ i1 < . . . < ik with
xi1 + · · · + xik = S/2.

Assuming Conjecture 4, we show there is a polynomial time reduction of the Partition

problem to the problem of deciding whether there exist integers m satisfying ϕ(m) = n,
for a certain small set of values of n.

To prove this theorem, we require the following result which could be of independent
interest.

Theorem 5. Given an odd number k ≥ 1 and given 2k integers x1, . . . , x2k, we can

construct in polynomial time a series of congruence classes ai (mod M), (ai,M) = 1,
such that if N1, . . . , N2k are any numbers satisfying Ni ≡ ai (mod M), and if {i1, . . . , i`} ⊂
{1, . . . , 2k}, with ` ≤ k, then

gcd(2Ni1 · · ·Ni` + 1, M) = 1 ⇐⇒ ` = k and xi1 + · · · + xi` = S/2; (3)

Ni − 1 - 4N1 · · ·N2k, i = 1, . . . , 2k; (4)

gcd(2N1 · · ·N2k + 1, M) > 1, and gcd(4N1 · · ·N2k + 1, M) > 1. (5)

Proof. First, we let R1, . . . , Rk−1 be the first consecutive primes greater than k. Next,
given

A = 1 +

2k
∑

i=1

|xi|,

we let U1, . . . , Ut be the first consecutive primes greater than Rk−1 such that

t
∏

i=1

Ui > 2A.

Finally, we let v = Ut, and then let V1, . . . , Vv be consecutive primes greater than Ut.
Then, we let

M = 8 · 3 · 5 ·

k−1
∏

h=1

2Rh + 1

3

t
∏

i=1

v
∏

j=1

2UiVj − 1

(2Ui − 1)(2Vj − 1)
.

We claim that this integer M satisfies log M = (Ak)O(1), which can be proved by repeated
use of the Prime Number Theorem; also, we claim that each of these factors are coprime
to the others, which can be proved by repeated use of the fact that (2H − 1, 2K − 1) =
2(H,K) − 1.

We let a1, . . . , a2k all be in the same class modulo 8 · 3 · 5, defined via the Chinese
remainder theorem as follows:

ai ≡ 1 (mod 8); ai ≡ 2 (mod 3); ai ≡ 4 (mod 5);

and, for j = 1, . . . , k − 1, we let

ai ≡ 2gj (mod (2Rj + 1)/3), (6)

where for gj is any solution to 1 + jgj ≡ Rj (mod 2Rj) (for j odd there is a unique gj ;
and for j even, there are two values gj that satisfy this).
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The congruence condition modulo 8 ensures that (4) holds; the congruence modulo
3 forces the first part of (5) to hold; and the condition modulo 5 forces the second part
of (5) to hold. Finally, the condition (6) ensures that gcd(2Ni1 · · ·Ni` +1,M) = 1 implies
` = k, which is part of (3).

Now, for i = 1, 2, . . . , t, we let

{θ(i, 1), . . . , θ(i, Ui − 1)} = {0, . . . , Ui − 1} \ {S/2 (mod Ui)};

that is, for every i = 1, 2, . . . , t, the values of θ(i, j) run through the congruence classes
modulo Ui, omitting the class S/2 (mod Ui). Next, let

δi,j ≡ k−1 (mod UiVj), 0 ≤ δi,j ≤ UiVj − 1.

Then, for i = 1, 2, . . . , t, j = 1, 2, . . . , Ui − 1, and ` = 1, . . . , 2k, we let

a` ≡ −2Vjx`+δi,j (Vjθ(i,j)−1) (mod
2UiVj − 1

(2Ui − 1)(2Vj − 1)
)

Then, if {xn1
, . . . , xnk

} is any k-element subset of k of {x1, . . . , x2k} such that xn1
+

· · · + xnk
6= S/2, we must have that for some i = 1, 2, . . . , t and j = 1, 2, .., Ui − 1,

xn1
+ · · · + xnk

≡ θ(i, j) (mod Ui);

and so, on letting T = (2UiVj − 1)/(2Ui − 1)(2Vj − 1), we see that if Ni ≡ ai (mod M),
then

2Nn1
· · ·Nnk

+ 1 ≡ (−1)k21+Vj(xn1
+···+xnk

−kδ(i,j)θ(i,j))−kδ(i,j) + 1

≡ −2UiVjI + 1 ≡ 0 (mod T ),

where I is some integer. Conversely, if xh1
+ · · · + xhk

= S/2, then one can show that
(2Nh1

· · ·Nhk
+ 1,M) = 1. Thus, we have established (3), and the result follows.

Now are now ready to prove our main result.

Theorem 6. Suppose that x1, . . . , x2k is an input of the Partition problem. Let

B =

2k
∑

i=1

log(xi + 2).

Then, in polynomial time, we construct a set of s = BO(1) integers n1, . . . , ns such that

the answer to the corresponding Partition problem is “Yes” if and only if for some

i = 1, 2, . . . , s we have that ϕ(m) = ni has a solution.

Proof. Suppose x1, . . . , x2k are given. We may assume that k is odd, since if k is even,
then we can enlarge our set {x1, . . . , x2k} by two new elements x2k+1 = x2k+2 = 0.

Now, suppose that p1, . . . , p2k are a set of primes satisfying pi ≡ ai (mod M), pi > M .
Then, as a consequence of (3), (4), and (5) of Theorem 5, one can see that if there is a
solution m to

ϕ(m) = 4p1 · · · p2k,

then m = P1P2 or 2P1P2, where P1 and P2 are both primes satisfying

P1 = 2pi1 · · · pik + 1, and P2 = 2pj1 · · · pjk
+ 1,
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where {pi1 , . . . , pik} ∪ {pj1 , . . . , pjk
} = {p1, . . . , p2k}. Moreover, we have

xi1 + · · · + xik = S/2 = xj1 + · · · + xjk
. (7)

Now suppose that there are two subsets of {x1, . . . , x2k} satisfying (7). Let ` be one
of the numbers 2, 3, . . . , k + 2, and suppose we are lucky and have 1 ∈ {i1, . . . , ik} and ` ∈
{j1, . . . , jk}, or have 1 ∈ {j1, . . . , jk} and ` ∈ {i1, . . . , ik}; certainly, for one of these values
` = 2, 3, . . . , k + 2 this must hold. We suppose that 1 ∈ {i1, . . . , ik} and ` ∈ {j1, . . . , jk}.
Let {t1, . . . , t2k−2} = {1, 2, . . . , 2k} \ {1, `}. Then, assuming conjecture 4 (speicializing to
the case of one linear form, instead of two), we can pick values t1, . . . , t2k−2 < BO(1) such
that the numbers ai + Mti are all prime; moreover, we can pick these numbers in time
BO(1), by first picking t1, then t2, and so on.

Now, we consider the polynomials

F (x) = 2(a1 + Mx)
∏

u∈{i1,...,ik}
u6=1

(au + Mtu) + 1,

and
G(y) = 2(a` + My)

∏

u∈{j1,...,jk}
u6=`

(au + Mtu) + 1.

By (3), F (x) and G(y) are coprime to M for all integers x, y, and so have no fixed prime
divisors; moreover, (a1 + Mx)F (x) and (a` + My)G(y) have no fixed prime divisors. So,
assuming Conjecture 4, if we run through the values x, y < BO(1) that make a1 + Mx
and a` + My both prime, then among these values x and y, there must be a choice which
makes a1 +Mx, a` +My,F (x), and G(y) all prime. So, we have a set of primes p1, . . . , p2k

of the form
p1 = a1 + Mx, p` = a` + My,

and
pi = ai + Mti, i = 2, . . . , ` − 1, ` + 1, . . . , 2k.

These primes satisfy the congruence conditions pi ≡ ai (mod M). Furthermore, we also
have that 2pi1 · · · pik + 1 = F (x) is prime, as is 2pj1 · · · pjk

+ 1 = G(y). So, if we let
n(x, y) = 4p1 · · · p2k, then we get a solution ϕ(F (x)G(y)) = n(x, y). So, by running
through choices for x, y < BO(1), and ` = 2, 3, . . . , k + 2, we are guaranteed to hit upon a
value n(x, y) having a solution ϕ(m) = n(x, y), as long as there is a subset of {x1, . . . , x2k}
summing to S/2.

Conversely, if there is no subset of {x1, . . . , x2k} summing to S/2, then either F (x) or
G(y) is an odd composite number, and so they fail to satisfy ϕ(F (x)G(y)) = n(x, y) for
all values x, y.

Thus, the Partition problem can be reduced, in polynomial time, to the problem of
deciding whether ϕ(m) = n for a set of BO(1) values n, which finishes the proof.

5 Inverting the Euler Function and Integer Factorisation

The algorithm of Theorem 1 assumes that the prime number factorisation of n is given.
Here we show the factorisation problem for integers from P2 can be reduced in in proba-
bilistic polynomial time to the problem of inverting the Euler function.
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Theorem 7. Given an algorithm that finds Ψ(m) in time (#Ψ∗(m) + τ(m) + log m)O(1),

without being given the prime factorisation of n, one can factor integers n ∈ P2 in proba-

bilistic polynomial time.

Proof. Let π(X; r, a) denote the number of primes ` ≤ X with ` ≡ a (mod r). We need
the following result which is a greatly relaxed version of Theorem 2.1 of [2]. Namely, if r
is a sufficiently large prime number then for X ≥ r3

π(X, 4r, a) ≥
X

4r log X
. (8)

for any integer a with gcd(a, 4r) = 1.
Now, assume we are given sufficiently large odd n = pq ∈ P2. We choose two positive

integers k1, k2 ≤ n3 and consider the product 4(2k1 + 1)(2k2 + 1)n.
It is clear that if 4(2k1 + 1)(2k2 + 1)n = ϕ(m) then ω(m) ≤ 3. More precisely, it is

possible only for the values of m of the form

1. m = ` or m = 2` or m = 4` where ` is prime;

2. m = `1`2 or m = 2`1`2 where `1, `2 are prime.

In each case of the first group ` is uniquely defined (and clearly there are at most two
suitable values of `).

Both cases of the second type occur simultaneously with the same values of `1, `2 which
(up to a permutation) are either of the form

`1 = 2d1 + 1, `2 = 2d2pq + 1,

or of the form
`1 = 2d1p + 1, `2 = 2d2q + 1,

where d1 and d2 are divisors of (2k1+1)(2k2+1) with d1d2 = (2k1+1)(2k2+1). Therefore,
there are at most

2τ((2k1 + 1)(2k2 + 1)) ≤ 2τ(2k1 + 1)τ(2k2 + 1)

possible solutions of the second kind. We see from (2) then the total number of positive
integers k ≤ X with τ(k) ≥ log3 X is O(X log−2 X). Thus from (8) (applied with r = p
and a = 2r + 1) we derive that there are at least

4n3p

4p log n3
+ O(n3 log−2 n) ≥

n3

2 log n3

positive integers k1 ≤ n3 for which simultaneously 2(2k1+1)p+1 is prime and τ(2k1+1) ≤
log3 n. Similarly, we have at least the same number of positive integers k2 ≤ n3 for which
simultaneously 2(k2 + 1)q + 1 is prime and τ(2k2 + 1) ≤ log3 n.

For each such pair of integers k1, k2 we see that the cardinality of Ψ(4(2k1+1)(2k2+1)n)
is polynomially bounded, namely, #Ψ(4(2k1 + 1)(2k2 + 1)n) = O(log6 n), and contains a
solution of the form

m = (2(2k1 + 1)p + 1)(2(2k2 + 1)q + 1) (9)

from which, together with the equation n = pq, the primes p and q can be trivially found
(we certainly have to try all values of m ∈ Ψ(4(2k1 + 1)(2k2 + 1)n) in order to find the
one of the form (9)).
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These considerations naturally lead to the following probabilistic algorithm which finds
the above pair of k1, k2 and thus the primes p and q.

Assume that the inverting algorithm outputs Ψ(N) in time bounded by (#Ψ(N) log N)A

for some constant A > 0. We choose integers k1, k2 uniformly at random in the interval
[1, n3] and use the algorithm to compute Ψ(4(2k1 + 1)(2k2 + 1)n). If the time it takes
exceeds log8A N this means that #Ψ(4(2k1 + 1)(2k2 + 1)n) ≥ log7 N and we simply ter-
minate the algorithm and choose another pair k1, k2. It is clear that in the expected time
O(log6 n) we find the desired pair of k1, k2.
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