
The Simplex Algorithm

April 25, 2005



Problem. We seek x1, ..., xn ≥ 0 which mini-

mizes

C(x1, ..., xn) = c1x1 + · · · + cnxn,

subject to the constraint Ax ≥ b, where A is

m × n, b = m × 1.

Through the introduction of m slack variables

w1, ..., wm, we can replace the inequality Ax ≥ b

with an equality A′x′ ≥ b′, where here A′ is

m × (m + n), and b = m × 1. Basically, the

variables w = [w1 · · · wm]T satisfy

w = Ax − b.



Our problem then becomes

Problem. Minimize cx, where

c = [c1 c2 · · · cn 0 0 · · · 0],

and

x = [x1 · · · xn w1 · · ·wm],

subject to the constraints

Ax = b, and x ≥ 0,

where A = m × (m + n), b = m × 1.

The region of R
n described by x1, ..., xn satisyf-

ing these constraints is called the feasible re-

gion. The cost cx will be minimized at one of

the vertices of the feasible region, and these

vertices are where exactly n of the variables

x1, ..., xn, w1, ..., wm are 0, and where the re-

maining variables are positive.



Actually, it is possible to have vertices where

more than n of the variables vanish. This hap-

pens if there is some redundancy in our lin-

ear system. We will assume that this does not

happen for purposes of describing a bare-bones

version of the simplex algorithm.

The algorithm has two phases: The first phase

locates a vertex of this region, and the second

phase finds the vertex where the cost is mini-

mized.

Suppose we have an algorithm for solving phase

I. We now see how phase II works. Basically,

we hop from vertex to vertex while reducing

the cost. So, the method is iterative. Sup-

pose that at the start of one step we are at a

vertex v1, and by the end of that step we reach

vertex v2.

The vertex v1 will be connected to v2 by an

edge. This edge corresponds to where n − 1



of the m + n variables are 0 (which in turn

corresponds to the intersection of n−1 hyper-

planes).

Now, at v1 we will have that n of these vari-

ables are 0, and as we pass to v2, n−1 of these

will remain 0, while one that was zero will be-

come positive, and one that was positive will

become 0.

The variables that are 0 when we are at v1 we

will call free or out-variables, and the remaining

m variables which are positive we will call basic,

or in-variables. So, when we hop from v1 to

v2, exactly one of the in-variables will become

an out-variable, and one of the out-variables

will become an in-variable.



There are n different edges in the feasible re-

gion that are connected to v1, basically one

edge per subset of n− 1 of the n out-variables

(note that there are
(

n
n−1

)

= n such subsets).

So, because there are multiple edges, there are

multiple choices for which vertex v2 to hop to

from v1.

How do we decide which vertex to visit next?

Basically, we pick a direction along which the

cost function C(x1, ..., xn, w1, ..., wm) decreases.

And the heart of the simplex method is com-

ing up with a simple rule for deciding which

direction to consider.



To figure out what such a rule is, consider the

following example. Suppose we are at a vertex

v1 where w1 = w2 = 0. Suppose that the cost

function is C = 2w1 − 3w2. Finally, suppose

that our constraint Ax = b is

[

1 0 3 4
0 1 2 1

]











x1
x2
w1
w2











=

[

1
5

]

.

So, we have (x1, x2) = (1,5) and C = 0. No-

tice that the left-most 2 × 2 submatrix of A is

the identity matrix, and that x1 and x2 are the

in-variables, while w1, w2 are out-variables.

Now, if hold w1 = 0 while increasing w2, then

the cost will go down. Thus, we know that it is

possible to decrease the cost by making w2 an

in-variable. But then, we must decide which

of x1 or x2 is to become the out-variable.



Basically, we pick the the xi which will allow

us to increase w2 as much as possible, because

that will mean that the cost decreases as much

as possible. We are lucky in that our con-

straints have the special form

[

1 0 3 4
0 1 2 1

]











x1
x2
w1
w2











=

[

1
5

]

.

Setting w1 = 0, this is

x1 + 4w2 = 1, and

x2 + w2 = 5.

Now, if we decrease x1 all the way down to 0

(i.e. make it an out-variable), then from the

first equation, we can increase w2 all the way to

1/4. If we make x2, then the second equation

says that we can let w2 = 5; but if we took

w2 = 5, we would violate the first equation,

because x1 ≥ 0. Thus, the best we can do is

w2 = 1/4, so x1 is the new out variable.



What made the decision easy as far as the ver-

tex to pick next in this example was that:

1. In the matrix A, the part corresponding to

the in-variables (or basic variables) formed an

identity matrix.

2. The cost function was expressed purely in

terms of the out-variables (free variables).

It turns out that we can always arrange for

these two things to happen, and perhaps the

best way to see this is to form a special matrix,

which we will call a tableaux. Our tableaux will

be slightly different from the one in your book.



Starting with Ax = b, we rearrange variables so

that the the in-variables come first. In other

words, suppose that, initially x1 and w1 were

the in-variables, and our equation is

[

1 2 3 4
5 6 16 8

]











x1
x2
w1
w2











=

[

4
21

]

.

Further, suppose we start at the vertex

(x1, x2, w1, w2) = (1,0,1,0).

Then, by moving the variables x1 and w1 to

the top, we get the system

[

1 3 2 4
5 16 6 8

]











x1
w1
x2
w2











=

[

4
21

]

.



Next, we augment this matrix by adding in

the cost function. Say that the cost is C =

x1 − 15x2 + 7w1 + 8w2. Then, the augmented

system is







1 3 2 4
5 16 6 8
1 7 −15 8

















x1
w1
x2
w2











=







4
21
C






.

It is best to write this as a single matrix






1 3 2 4 4
5 16 6 8 21
1 7 −15 8 C






.

Next, we apply elimination to get a 2×2 iden-

tity matrix in the upper left-hand-corner and

0’s below identity matrix (in the third row).



We have






1 3 2 4 4
5 16 6 8 21
1 7 −15 8 C







→







1 3 2 4 4
0 1 −4 1 1
1 7 −15 8 C







→







1 0 14 40 1
0 1 −4 −12 1
1 7 −15 8 C







→







1 0 14 40 1
0 1 −4 −12 1
0 0 −1 44 C − 8






.

Notice that this last line in the last matrix tells

us that

C = −x2 + 44w2 + 8,

which is in terms of the out-variables.



So, when we hop to the new vertex, x2 will

become an in-variable, because we can yet de-

crease C by increasing x2 away from 0. We

leave w2 as an out-variable, and so it will have

value 0. The first two lines of this matrix, to-

gether with w2 = 0 imply

x1 + 14x2 = 1

w1 − 4x2 = 1.

If we were to set x1 = 0, then the first equation

would give x2 = 1/14. If we set w1 = 0, then

the second equation would give x2 = −1/4,

which is impossible. So, it is impossible to

have w1 = 0. So, we must have x1 becomes

the new out-variable.



In general, suppose we are at a vertex de-

scribed by w1 = · · · = wm = 0. Further, sup-

pose that by making w1 become positive we

decrease the cost, while keeping w2 = · · · =

wm = 0 (this corresponds to a choice of an

edge). Then, perhaps we have a series of equa-

tions of the following type:

x1 + 2w1 = 1

x2 + 8w1 = 3

x3 − w1 = 5

x4 + 2w1 = 7.

Then, we consider the minimum of the positive

ratios 1/2, 3/8, and 7/2 to determine which

of x1, ..., x4 will be the new out-variable (free

variable). Since 3/8 is the smallest ratio, then

x2 becomes the new out-variable; and so, the

new vertex we visit will be where x2 = 0, w1 =

3/8 and w2 = · · · = wn = 0.



Three comments:

1. After elimination we could never get an

equation of the type x1 − 2w1 = −1, where

the coefficient on wi and the number on the

other side of the equation are both negative.

The reason is that w1 = · · · = wm = 0 corre-

sponded to the the vertex at which we started

the elimination step; however, this would give

x1 = −1, which cannot correspond to a vertex

point.

2. If all the equations (after elimination and

substituting in w2 = · · · = wm = 0) are of the

form xi − αiw1 = βi, where αi, βi > 0, then our

feasible region is not bounded, and there is

no minimum (we can take w1 arbitrarily large,

and pick the xi > 0 to make all these equations

hold; the cost can therefore be made infinitely

negative).



3. Suppose that after elimination our cost

function was, say,

C = x2 + 44w2 − 11.

Then it would not be possible to decrease the

cost by making x2 or w2 > 0, while setting the

other variable to 0. So, we cannot hop to a

new vertex while decreasing the cost. There is

a good reason for that: In such a case we have

found the vertex which minimizes the cost.

Thus, the simplex algorithm amounts to iter-

ating the above process of jumping from ver-

tex to vertex until we produce a cost function

having all positive coefficients. When this hap-

pens, we stop and declare that we have found

the minimum cost.

It remains to explain how to solve Phase I.



Suppose we started with the system

y − x ≥ 1

y + x ≥ 10

−y ≥ −12

x, y ≥ 0.

Then, we add in our slack variables S1 and S2,

making the system

y − x − S1 = 1

y + x − S2 = 10

−y − S3 = −12

x, y, S1, S2 ≥ 0.

If we were to set x, y = 0, in the hopes of find-

ing a vertex, we would have S1 = −1, S2 =

−10, and S3 = 12. So, (x, y, S1, S2, S3) =

(0,0,−1,−10,12) is not a vertex of our (new)

feasible region.



The problem was the first two equations in-

volving S1 and S2. The idea is to introduce

extra variables E1 and E2 so that it is easy to

spot a vertex of the system. We put these

extra variables E1 and E2 into the first two

equations, and we have

y − x − S1 + E1 = 1

y + x − S2 + E2 = 10

−y − S3 = −12

x, y, S1, S2, E1, E2 ≥ 0.

We see that

(x, y, S1, S2, S3, E1, E2) = (0,0,0,0,12,1,10)

is a vertex. We obtained this in a mindless

manner – we set our original variables x, y to

0, and we set S1 = S2 to 0 because these were

the variables we had the problem with before.

The values of the remaining variables are then

fixed and are positive.



The idea now is to apply linear programming

to the above system to the cost function

C(x, y, S1, S2, S3, E1, E2) = E1 + E2.

Since we know our original system without the

new variables E1 and E2 has at least one ver-

tex, there must be a choice for

x, y, S1, S2, S3, E1, E2 ≥ 0

such that E1, E2 = 0. But this will minimize

the cost.

So, minimizing the cost of this new system

involving E1 and E2 corresponds to finding a

vertex in the original system. This gives us

our starting vertex in the original system from

which we apply Phase II.


