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Abstract

We show that for any ε > 0, there exists c > 0, such that for
all x sufficiently large, there are x1/2(log x)− log 4−o(1) integers n ∈
[x, x + c

√
x], all of whose prime factors are ≤ x47/(190

√
e)+ε.
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1 Introduction.

There are many unsettled questions concerning the distribution of integers
having no “large” prime factors. Such integers are called “smooth numbers”,
and we say that an integer n is y-smooth if all its prime divisors are ≤ y.
For an interval [a, b] define ψ([a, b], y) to be the number of y-smooths lying
in [a, b]. The following is one such important, unsettled question:

Conjecture 1

ψ([x, x+
√
x], xθ) > 0, for all 0 < θ ≤ 1, and all x > x0(θ).
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Harman [6] showed that this conjecture holds for y = x1/(4
√

e)+ε and
any ε > 0; moreover, he has shown that there are � √

x such y-smooths in
[x, x+

√
x], and has obtained results for even shorter intervals, at the expense

of requiring larger values of y. For intervals of length much longer than
√
x,

much more is known. For instance, Balog [1] showed that

ψ([x, x + x1/2+ε], xα) > x1/2+ε−oε,α(1),

and many researchers have proved various refinements. For instance, Fried-
lander and Granville [3] showed that the interval width x1/2+ε can be replaced
with any

z > y2
√
x exp((log x)1/6),

and xα with y, where

exp((log x)5/6+o(1)) ≤ y ≤ x.

Friedlander and Lagarias [5] obtained results for intervals shorter than x1/2,
and showed that

ψ([x, x + xβ], xα) �α,β xβ, whenever β > 1 − α− cα(1 − α)3,

where c is an absolute positive constant. There are also some conditional
improvements; for instance, Xuan [9] showed that the Riemann Hypothesis
implies [x, x +

√
x(log x)1+o(1)] contains an xε-smooth.

In this paper we prove the following

Theorem 1 For every ε > 0, there exist c = c(ε), such that for all x suffi-

ciently large,

ψ([x, x + c
√
x], x47/(190

√
e)+ε) >

√
x(log x)− log 4−o(1).

This result improves upon that of Harman’s for intervals of length more
than a constant times

√
x; however, Harman’s still gives the strongest result

for intervals of length exactly
√
x. It might be possible to refine the argument

in our paper to beat Harman’s result for intervals of length less than
√
x,

but the argument would certainly be much more complicated.
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2 Proof of Theorem 1.

2.1 Discussion of the Proof Strategy

Let δ = δ(ε) be some parameter, which we will choose later. The proof will
work by showing that a little more than half of the integers

z ∈ Z := [(1 + δ)−1
√
x, (1 + δ)

√
x] ∩ Z

have the property that [z, z + k] contains a y = x47/190
√

e+ε-smooth integer.
Here, k = k(ε) denotes a constant that depends only on ε.

If we can show this, then, as we will explain in the next subsection, there
must exists lots of pairs of integers

z1 ∈ [(1 − δ)
√
x,

√
x], z2 ∈ [

√
x, (1 + δ)

√
x], with z2 = dx/z1e,

such that both the intervals [z1, z1 + k] and [z2, z2 + k] contain y-smooth
numbers s1 and s2, respectively. The product s1s2 is also y-smooth, and
satisfies

x ≤ s1s2 < x + 3k
√
x. (for small enough δ > 0.)

In fact, we will show that there are more than κ
√
x such pairs s1, s2,

where κ = κ(δ, ε) > 0. This will prove our theorem in light of the following
observation: Let P denote the set of all these pairs, and note we have |P | >
κ
√
x. Among the (s1, s2) ∈ P , consider those satisfying

Ω(s1), Ω(s2) < log log x+ (log log x)2/3, (1)

where Ω(n) denotes the number of prime power divisors of n. As density
1 − o(1) of the integers n < 2

√
x satisfy this inequality, we conclude that

(1 − o(1))|P | of our pairs (s1, s2) do too. 1 But then for each such pair we
have

Ω(s1s2) < 2 log log x+ 2(log log x)2/3,

which implies
τ(s1s2) < (log x)log 4+o(1).

1Note that no s ∈ [(1+δ)−1
√

x,
√

x] appears more than O(k) times as a first coordinate
of a pair in P , and the analogous thing is true for the second coordinate. Thus, there are
� √

x distinct first coordinates, and distinct second coordinates.
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Thus, the number of distinct products s1s2 such that (s1, s2) ∈ P satisfies
(1) is at least

(1 − o(1))|P |
max(s1,s2)∈P τ(s1s2)

>
√
x(log x)− log 4−o(1),

which would prove our theorem.

2.2 Further Discussion

Let A denote the set of all integers z ∈ Z, such that

ψ([z, z + k], y) ≥ 1 (2)

As we said before, if |A| is a little more than |Z|/2 ∼ δ
√
x, then we can make

the above approach to proving our theorem work. More specifically, we will
show that our argument will work if x is sufficiently large and

|A| ≥ (δ + δ2)
√
x.

Assume |A| is indeed this large, and define the mapping

f : Z → Z ∪ {b}
a → dx/ae,

where b is one more than the largest element of Z, and let fA denote the
restriction of f to A ⊆ Z.

Although f is not injective, it almost is for small δ: First, define

Z1 = [(1 + δ)−1
√
x,

√
x) ∩ Z, and Z2 = [

√
x, (1 + δ)

√
x] ∩ Z,

and note that Z = Z1 ∪ Z2. Now, f maps Z1 injectively into Z2 ∪ {b}, and
all but O(1) integers in Z1 are in the image of f restricted to Z2. Thus, for
x sufficiently large,

|im(f)| ≥ 2|Z1| +O(1) ≥ (2δ − 2δ2)
√
x;

and therefore

|im(fA)| ≥ |A| − (|Z| + 1 − |im(f)|) > (δ − δ3)
√
x. (3)
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This inequality follows since f is at worst two-to-one (at least for δ small
enough), and there are at most |Z|+ 1− |im(f)| points on Z ∪ {b} with two
preimages in Z.

The fact that fA satisfies (3) implies

|im(fA) ∩ A| ≥ |A| + |im(fA)| − |Z| > (2δ2 − 2δ3)
√
x.

Thus, there are more than (2δ2 − 2δ3)
√
x pairs (a, dx/ae) ∈ A× A, which is

just the sort of conclusion we wanted.

2.3 An Application of the Second Moment Method

To show that |A| ≥ (δ + δ2)
√
x, and therefore complete the proof, we will

apply the second moment method, along with a standard trick for reducing
the smoothness bound (the standard trick is what contributes the factor

√
e).

Define

D := {p1p2 : pi prime : pi ∈ [x12/95−ε/3, x12/95−ε/4]},

and for an integer n, define

h(n) = |{q ∈ D : q|n}|.

The expected value of h(n) over n ∈ Z will be

E(h) :=
1

|Z|
∑

n∈Z

h(n) ∼
∑

q∈D

1

q
.

A lower bound for this expectation is

E(h) � 1

|Z|
∑

p1,p2∈[x12/95−ε/3, x12/95−ε/4]
pi prime

|Z|
p1p2

� ε2. (4)
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We will show that for fixed ε, δ > 0 if x > x0(δ, ε) and k > k0(δ, ε), then

V :=
∑

z∈Z





∑

n∈[z,z+k]

h(n) − (k + 1)E(h)





2

=
∑

z∈Z





∑

n∈[z,z+k]

h(n)





2

− (k + 1)2
E(h)2|Z| +O(k). (5)

is “small”. What this will mean is that for “most” z ∈ Z we will have
∑

n∈[z,z+k]

h(n) ≈ (k + 1)E(h).

At this point all we would get is that most of these intervals [z, z + k]
contain a number which is x47/190+ε smooth, because if h(n) ≥ 1 for some n
in this interval, then it factors as

n = p1p2d, where pi ≥ x12/95−ε/3,

which forces

d <
(1 + δ)x1/2

p1p2

< 2x47/190+2ε/3 < x47/190+ε.

(For δ < 1, of course.)

2.4 Boosting the Smoothness

To get that extra boost of
√
e in the exponent of the smoothness bound, we

show that “about half the time” the divisor d above is x47/190
√

e+ε smooth.
We begin by defining the modified weighting (a modification of h(n))

h2(n) = g(n)h(n), where g(n) =

{

1, if n is x47/190
√

e+ε smooth;
0, otherwise.

Then, we have that

E(h2) =
1

|Z|
∑

q∈D

∑

n∈Z
q|n

g(n/q). (6)

6



To estimate this inner sum we use the well-known fact that for ε0 > 0 there
exists ε1 > 0 such that

ψ(N,N1/
√

e+ε0) ∼ (1/2 + ε1)N.

Thus, the inner sum in (6) exceeds (1/2 + γ1)|Z|/q, where γ1 > 0 depends
on ε > 0, and tends to 0 as ε tends to 0; and so,

E(h2) > (1/2 + γ1)E(h). (7)

In the next subsection we will show that once

0 < δ < δ0(ε), k > k0(ε, δ), (8)

and x is sufficiently large, then

V ≤ δ2
E(h)2(k + 1)2|Z|. (9)

It turns out that this implies that at least (δ + δ2)
√
x of the integers z ∈ Z

satisfy
ψ([z, z + k], y) > 0, (10)

which we know proves our theorem from comments in the previous subsec-
tion.

To see this last deduction, suppose that (9) holds and that, on the con-
trary, fewer than (δ + δ2)

√
x intervals [z, z + k] satisfy (10). Let Z ′ denote

the set of all z ∈ Z such that [z, z + k] is one of these intervals. We have

∑

z∈Z





∑

n∈[z,z+k]

h(n)





2

≥
∑

z∈Z′





∑

n∈[z,z+k]

h2(n)





2

+
∑

z∈Z\Z′





∑

n∈[z,z+k]

h(n)





2

.

(11)
To bound this first sum on the right-hand-side from below we note that all
but O(k) integers n ∈ Z lie in exactly k + 1 intervals [z, z + k], z ∈ Z; and
so, by Cauchy-Schwarz, this quantity is at least

(k + 1)2|Z ′|−1

(

∑

n∈Z

h2(n)

)2

+O(k2)

= (k + 1)2|Z ′|−1|Z|2E(h2)
2 +O(k2).

≥ (k + 1)2
E(h2)

2|Z|(2 +O(δ))

= (k + 1)2
E(h)|Z|(1/2 + 2γ1 + 2γ2

1 +O(δ)).
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To bound the second sum on the right-hand-side of (11) from below, we first
apply the triangle inequality ||u||2 ≥ ||e||2−||u−e||2, where u, e are vectors,
with the coordinates of u equal to

∑

n∈[z,z+k] h(n) and the coordinates of e

equal to (k + 1)E(h), and deduce





∑

z∈Z\Z′





∑

n∈[z,z+k]

h(n)





2



1/2

≥ (k + 1)E(h)|Z \ Z ′|1/2 − V 1/2

≥ (k + 1)E(h)(|Z \ Z ′|1/2 − δ|Z|1/2).

Now, if δ > 0 is sufficiently small, then this last quantity is positive, and its
square is easily seen to be at least

(k + 1)2
E(h)2(|Z \ Z ′| − 2δ|Z|)) ≥ (k + 1)2

E(h)2(1/2 +O(δ))|Z|.

So, we deduce that

∑

z∈Z





∑

n∈[z,z+k]

h(n)





2

≥ (k + 1)2|Z|E(h)2(1 + 2γ1 + 2γ2
1 +O(δ)).

This and (5) implies that

V ≥ (k + 1)2|Z|E(h)2(2γ1 + 2γ2
1 +O(δ)),

which contradicts (9) once δ > 0 is sufficiently small.

2.5 Exponential Sums

To prove (9), in light of (5) it suffices to obtain a very sharp upper bound
for

∑

z∈Z





∑

n∈[z,z+k]

h(n)





2

=

(

∑

|j|≤k

(k + 1 − |j|)
∑

q1,q2∈D

∑

n∈Z
q1|n, q2|n+|j|

1

)

+ O(k2)

=

(

2

k
∑

j=1

(k + 1 − j)
∑

q1,q2∈D

∑

n∈Z
q1|n, q2|n+j

1

)

+O(k|Z|).
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It is pretty clear, and easy to show, that this last quantity has the expected
size provided we can show for 1 ≤ j ≤ k that

∑

q1,q2∈D

∑

n∈Z
q1|n, q2|n+j

1 = (1 + ok,ε,δ(1))E(h)2|Z|; (12)

and, if we can do this, then if k, δ satisfy (8), we will have (9) for x sufficiently
large, thus proving our theorem.

In the sum on the left-hand-side of (12) we only need to consider q1, q2 ∈ D
such that (q1, q2) = 1, since we cannot have a prime p > x12/95−ε/3 dividing
both n and n+ j. Thus, to prove (12), we just need to count the number of
integers d, and integers q1, q2 ∈ D, (q1, q2) = 1, satisfying the congruence

d ≡ jq−1
2 (mod q1), where

(1 + δ)−1
√
x

q2
< d <

(1 + δ)
√
x

q2
. (13)

The fact that the range for d depends on q2 is problematic. We handle
this by partitioning D into D1 ∪ · · · ∪Dt, where t = [log x], and where Di is
the set of all elements of D lying in the interval

[x24/95−2ε/3 + (i− 1)L0, x
24/95−2ε/3 + iL0), where L0 = t−1x24/95−ε/2,

and by defining I1, ..., It to be integer intervals, where Ii is the set of all
integers d satisfying

(1 + δ)−1
√
x

max{q ∈ Di}
≤ d <

(1 + δ)
√
x

min{q ∈ Di}
.

Then, our number of solutions to (13) is

(1 + ok,ε,δ(1))
t
∑

i=1

∑

q1∈D

∑

q2∈Di
(q2,q1)=1

∑

d∈Ii

d≡jq−1
2

(mod q1)

1. (14)

Good estimates for this quantity can be given through an application of
exponential sums: First, define

Di(a, r) =
∑

q∈Di
(q,r)=1

e2πia[q]/r, where q[q] ≡ 1 (mod r),
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and define
Ii(a, r) =

∑

d∈Ii

e2πiad/r.

Then, our sums in (14) equal

t
∑

i=1

∑

q1∈D

1

q1

∑

|a|<q1/2

Di(ja, q1)Ii(−a, q1). (15)

The total contribution of the a = 0 terms here is

(1 + ok,δ,ε(1))
t
∑

i=1

|Di||Ii|
∑

q1∈D

1

q1
= (1 + ok,δ,ε(1))E(h)

t
∑

i=1

|Di||Ii|.

This last sum over i counts, up to an error factor 1 + ok,δ,ε(1), the number of
products q2d which lie in Z, where q2 ∈ D. Thus, the contribution of all the
a = 0 terms is

(1 + ok,δ,ε(1))E(h)2|Z|;
and so, proving (12) amounts to showing that the contribution of the terms
a 6= 0 to (15) is ok,δ,ε(|Z|).

2.6 Kloosterman Sums

To bound from above the terms in (15) where a 6= 0 we first fix i = 1, ..., t,
and a satisfying

a 6= 0, |a| ≤ max
q1∈D

q1/2 < x24/95−ε/2;

and then, we try to bound

∑

q1∈D

1

q1
Di(ja, q1)Ii(−a, q1) (16)

from above in absolute value.
To carry out this plan, we will require the following very slight modi-

fication of a theorem of Duke, Friedlander, and Iwaniec [2, Theorem 2] on
bilinear forms of Kloosterman sums: 2

2The modification amounts to replacing the range on n from [N, 2N ] to [N, N 1+ε0 ].
This is easily handled by writing the sum with [N, N 1+ε0 ] as a series of sums over dyadic
intervals. Also, our version is stated for arbitrary a, whereas version in [2] is for a ≥ 0 –
the version for arbitrary a is easily deduced by taking complex conjugates.
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Theorem 2 Suppose that {αm}M<m≤2M and {βn}N<n≤N1+ε0 are sequences

of complex numbers, and define

B(M,N, a) =
∑

N<n≤N1+ε0

βn

∑

M<m≤2M
(m,n)=1

αme
2πia[m]/n.

Then, for every ε1 > 0 and every integer a we have the following bound

B(M,N, a) �ε1 ||α||2||β||2(|a| +MN)3/8(M +N)11/48+ε1+2ε0/3

Here, ||α||2 = (
∑

i α
2
i )

1/2.

Remark. In our case, the βn are supported on a set of integers n = p1p2,
where pi < x12/95, and perhaps there is a way to take advantage of this special
form to improve the bilinear form estimates in this case. If so, it would lead
to an improvement to our main theorem.

We apply this theorem with

M = N = min
q∈D

q = (1 + oε(1))x24/95−2ε/3

with

αm =

{

1, if m ∈ Di;
0, if m 6∈ Di.

with

βn = βn(ja) =

{

Ii(−a, n)/n, if n ∈ D, and n > 2|a|;
0, otherwise;

and finally with ε0 = ε/6 (we leave ε1 as a parameter that we choose as small
as needed later). With this choice of parameters the expression in (16) equals
B(M,N, ja), which for |a| < maxq∈D q/2, a 6= 0 is

�ε1 ||β(ja)||2|Di|1/2x47/190+ε1/3−3ε/10 < ||β(ja)||2x71/190+ε1/3−3ε/4. (17)

2.7 Bounds on ||β(a)||2, and the Conclusion of the Proof

In order to sum this over all these values of a, we require upper bounds on
||β(ja)||2: We first realize that Ii(−a, n) is a geometric series with common
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ratio e−2πia/n; and so, using the notation ||t|| for the distance from t to the
nearest integer, we get the bound

|Ii(−a, n)| ≤ min(|Ii|, 2|e2πia/n − 1|−1)

= min(|Ii|, (sin π||a/n||)−1)

≤ min(|Ii|, (2||a/n||)−1). (18)

This last inequality follows from the fact that | sin(t)| ≥ 2|t|/π.
Now, if |a| < x1/190−ε, then we will just use the bound |Ii(−a, r)| ≤ |Ii|,

which gives

||β(a)||2 = |Ii|
(

∑

q1∈D

1

q2
1

)1/2

< |Ii|x−12/95+ε/3 < x23/190+ε.

On the other hand, when |a| > x1/190−ε we use the bound (2||a/n||)−1,
which gives

||β(ja)||2 ≤







∑

q1∈D
q1>2|a|

1

4q2
1||a/q1||2







1/2

<
|D|1/2

2|a| <
x12/95−ε/4.

|a|

Putting these bounds for ||β(ja)||2 together with the upper bound (17)
for the expression (16), we find that

∑

|a|<maxq∈D q/2

a6=0

∑

q1∈D
q1>2|a|

1

q1
Di(ja, q1)Ii(−a, q1) = Σ1 + Σ2,

where Σ1 is the sum of terms where a 6= 0 satisfies |a| < x1/190−ε, and where
Σ2 is the sum of terms where a 6= 0 satisfies |a| > x1/190−ε. We have that

Σ1 � (x1/190−ε) max
|a|<x1/190−3ε/5

a6=0

||β(ja)||2x71/190+ε1/3−3ε/4 < x1/2+ε1/3−3ε/4;

likewise,
Σ2 � x1/2+ε1/3−ε log x.

Thus, for ε1 = 2ε we will get that the contribution of terms where a 6= 0 to
(15) is ok,ε,δ(x

1/2) = ok,ε,δ(|Z|), which is just what we needed to show in order
to complete the proof of our theorem.
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