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1 Introduction

Suppose that S C F,,, where p is a prime number. Let Aj,...;\, be the
absolute values of the Fourier coefficients of S (to be made more precise
below) arranged as follows

~

S0) = A > Ay > o > 0,

Then, as is well known, one can work out, as a function of ¢ > 0 and a
density § = |S|/p, an upper bound for the ratio Ay/A; which guarantees
that S + S covers at least (1 — ¢)p residue classes modulo p. Put another
way, if S has a large spectral gap, then most elements of [F,, have the same
number of representations as a sum of two elements of .S, thereby making
S + S large.
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What we show in this paper is an extension of this fact, which holds
for spectral gaps between other consecutive Fourier coefficients A\, A\ry1, so
long as k is not too large; in particular, our theorem will work so long as

1 < k < [(logp)/log2].

Furthermore, we develop results for repeated sums S + S5 +---+ S.

It is worth noting that this phenomena also holds in arbitrary abelian
groups, as can be worked out by applying some results of Lev [4] and [5],
but we will not develop these here.!

The property of F, that we exploit, is something we call a “unique
differences” property, first identified by W. Feit, with first proofs and basic
results found by Straus [7].

Before we state the main theorems of our paper, we will need to fix some
notation: First, for a function f : F, — C, we define its normalized Fourier

transform as
fia = Ef(z)emP),

where E here denotes the expectation operator, which in this context is

defined for a function h : F, — C as
EA(2) = p Daer, h(2).
If the function h depends on r variables, say zi, ..., 2., we define

Ezl,---,zrh(zla LA ZT’) = p_rZzl,...,zreleh(zb R ZT)‘

We then will let A\, denote the kth largest absolute value of a Fourier co-
efficient of f; in other words, we may write F, := {a4, ..., a,}, where upon
letting A; := | f(a;)|, we have

A2 A = e 2 A,
We define the convolution of r functions fi, ..., f, : F, — C to be:

(.fl Koeeeok .fr)(n) = Ezl,...,zrfbfl(zl) e fr—l(zr—l)fr(n — R T Zr—1)~

Finally, for a function f : F, — C, we define the “support of f”, denoted as

supp(f) € T,

n some of these general groups, the results are rather poor compared with the F,
case. For example, they are poor in the case where one fixes p and works with the additive
group [}, where one lets n — co. The reason is that if one fixes a large subgroup of this
group, and then lets f be its indicator function, then f will have a large spectral gap,




to be the places a € F, where f(a) # 0.
Our main theorem of the paper, from which our results on sumsets S+.5

are an easy consequence, is stated as follows:

Theorem 1 Let p be a prime number and suppose that the function f :
F, — Rs( does not vanish identically. If, for real € and positive integer
k < [(logp)/log?2] we have A1 < )2, then

lsupp(f * f)| > (1 —20®)p, where 6 := E(f?).

Remark 1. By letting f be the indicator function for S, we see that
6 = E(f?) = E(f) = |S|/p, which is the density of S relative to F,. Also,
supp(f * f) is just S + S.

Remark 2. It is easy to construct functions f which have a large spectral
gap as in the hypotheses. For example, take f to be the function whose
Fourier transform satisfies f(0) = 1/2, f(1) = f(=1) = 1/4, and f(a) = 0
for a # 0,£1. Clearly we have f : F, — [0, 1], and of course f has a large
spectral gap between A3 and Ay (A3 = 1/4, while Ay = 0).

Remark 3. An obvious question that one can ask regarding the above
theorem is whether it is possible to relax the condition Agy; < eAi. In
particular, it would be desirable to reduce the exponent below 2. This seems
to be a difficult problem to address, as it is not even known how to improve
the exponent for the case k = 1, where a large spectral gap corresponds to
the assertion that the function f is quasirandom. An example indicating
that reducing the exponent near to 1 might be hopeless is given as follows:
Suppose that A is a random subset of I, of size o(,/p), then Ay = eA; holds
with e ~ |A|71/2, while A+ A is small as compared to p; however, this is not
quite a counterexample in the sense that in this case |A + A| is still large

as compared to |A|.

By considering repeated sums, one can prove similar sorts of results,
but which hold for a much wider range of k. Furthermore, one can derive
conditions guaranteeing that (f * f x---x f)(n) > 0 for all n € F,, not just
1 — e proportion of F,,. This new theorem is given as follows:

Theorem 2 Fiz t > 3. Then, the following holds for all primes p suf-
ficiently large: Suppose that f : F, — [0,1], f not identically 0, has the
property that for some

1 < k < (logp)~'(5tloglogp) 2,

we have that



(Note that 0 was defined differently in Theorem 1.) Then, the t-fold convo-
lution fx f*---x f is positive on all of IF,,.

Remark. It is possible to sharpen this theorem so that ¢ is allowed to
depend on p in some way, though we won’t bother to develop this here.

We conjecture that it is possible to prove a lot more:

Conjecture. The logarithmic bound on k£ in Theorem 1 can be replaced
with an exponential bound of the sort & < n® with a constant ¢ > 0.

This would obviously require a different sort of proof than appears in

the present paper.

2 Some lemmas

First, we will require the following standard consequence of Dirichlet’s box
principle; its proof is also standard, so we will omit it:

Lemma 1 Suppose that
T, € 1,
Then, there exists non-zero m € F,, such that

mr;
p

where here ||z|| denotes the distance from x to the nearest integer.

< p—l/t’

Fori=1,...t,

The following was first proved by Browkin, Divis and Schinzel [2] and is
also a consequence of much more robust results due to Bilu, Lev and Ruzsa
[1] and Lev [5] (unlike previous paper, this last paper of Lev addresses the
case of arbitrary abelian groups): 2

Lemma 2 Suppose that
B = {by,...,0:} C F,.

Then, if

t < [(logp)/log2],
there exists d € T, having a unique representation as a difference of two
elements of B.

2Straus [7] had a weaker form of this lemma, which had the upper bound |B| <
logp/log4 in place of |B| < [logp/log2]. He remarked that Feit had first brought the
problem to his attention. The first author of the paper (Croot) rediscovered a proof of
this result, as appeared in an earlier version of the present paper. Recently, Jariczak [3]

)
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Finally, we will also need the following lemma, which is a refinement of
one appearing in [6]:

Lemma 3 Suppose that
Bl,BQ Q ]Fp, where 10 S |Bl‘ S p/2 and ‘Bl| Z |BQ| (1)
If
2|By|log|Bi| < logp, (2)

then there exists d € By — By having a unique representation as d = by — bs,
b; € B;; on the other hand, if

2|By|log|Bi| > logp, (3)
then there exists d € By — By having at most

20| By |(log | B1[)?/ log p
representations as d = by — by, b; € B;.

Proof of the lemma. Suppose that (1) and (2) hold. Then, by Lemma
1 we have that there exists m such that for every z € C5 := m - By we
have |r| < p/|B;|?; furthermore, by the pigeonhole principle there exists
an integer interval [ := (u,v) N Z with u,v € C; := m - By, with |I| >
p/|Bi| — 1, which contains no elements of B;. So, v — max,ec, © has a
unique representation as a difference ¢; — ¢y, ¢; € C, ¢o € Cy. The same
holds for By — By, and so this part of our lemma is proved.

Now we suppose that (1) and (3) hold. Let B’ be a random subset of
B,, where each element b € B, lies in B’ with probability

(log p) /(3| Bs| log | B1).

Note that this is where our lower bound 2|Bs|log|B;| > log p comes in, as
we need this probability to be at most 1.
So long as the B’ we choose satisfies

|B'| < (logp)/(2log|Bi]), (4)

which it will with probability at least 1/3 by an easy application of Markov’s
inequality, we claim that there will always exist an element d € B— B’ having
a unique representation as a difference by — b, by € B, b, € B’: First, note
that it suffices to prove this for the set C; — C’, where



where m is a dilation constant chosen according to Lemma 1, so that every
element x € C" (when considered as a subset of (—p/2,p/2]) satisfies

| < p VPl < p/(3]B]).
Now, there must exist an integer interval
I = (u, v) N Z, u,v ey,
(which we consider as an interval modulo p) such that
Il = p/ICi] =1 = p/|B:] -1,

and such that no element of ('} is congruent modulo p to an element of I.
Clearly, then, v — max.ccr ¢ has a unique representation as a difference.
Now we define the functions

viz) = [{(c,c2) €CixCy 1 cp —cy = w}; and,
Ve) = Ha,d)eCixC g —d = z}.

We claim that with probability exceeding 2/3,
every ¥ € F, with v(z) > 20| By|(log | B1])?/log p, satisfies /(z) > 2. (5)
Note that since the sum of v(x) over all z € [, is |By| - | By, the number of

x satisfying this hypothesis on v(z) is at most, for p sufficiently large,

| B1| - | By __[Biflogp
20 By[(log |B1)*/logp  20(log|Bi|)>
by (3) and the fact |By| > | Ba|.
To see that (5) holds, fix x € C; — Cy. Then, /(z) is the following sum
of independent Bernoulli random variables:

< |Bil, (6)

v(z)
Vx) = ZXj, where Prob(X; =1) = (logp)/(3|B|log|B|).
j=1
The variance of V/(x) is
o? = v(x)Var(X;) < v(z)E(X)).
We now will need the following well-known theorem of Chernoff:

Theorem 3 (Chernoff’s inequality) Suppose that Z1, ..., Z,, are indepen-
dent random variables such that B(Z;) = 0 and |Z;| < 1 for all i. Let
Z = Y,7Z;, and let 0* be the variance of Z. Then,



We apply this theorem using Z; = X; — E(X;) and
do =v(x)E(X;) — 1.
and then deduce that if v(x) > 20|Bs|(log|B1|)?/ log p, then
Prob(v/(z) < 1) = Prob(Z <1 —v(z)E(Z))).
Noting that the quantity 1 — v(z)E(Z;) < 0, we deduce that this equals

(v(2)E(X,) — 1)?
4v(x)E(Xy)

Prob(|Z| < do) < 2exp (—6%/4) < 2exp (— ) < 1/(3|B1]).

Clearly, then, since there are at most (6) places x where v(x) satisfies the
hypotheses of (5), we will have that with probability exceeding 2/3 the claim
(5) holds. But we also had that (4) holds with probability at least 1/3; so,
there is an instantiation of the set B’ such that both (5) and (4) hold. Since
we proved that such B’ has the property that there is an element of x € By —
B’ having v/(z) = 1, it follows from (5) that v(z) < 20| Bs|(log|Bi|)?/ log p,
which proves the first part of our lemma.

[ |

3 Proof of Theorem 1

We apply Lemma 2 with
B = A = {ay,...,ax}, sot =k.
Then, let d be as in the lemma, and let
az, a, € A

satisfy

We define
g(n) = MM f(n),
and note that
(f* f)(n) = [(g*f)(n)]

So, our theorem is proved if we can show that (g % f)(n) is often non-zero.
Proceeding in this vein, let us compute the Fourier transform of g* f: First,
we have that



So, by Fourier inversion,

(fxg)(n) = ™" f(a,) f(a,) + E(n), (7)
where E(n) is the “error” given by
E(n) = Yaze,e 2" f(a) f(a + d).
Note that for every value of a # a, we have that

either a or a+d lies in {agi1,...,a,}
= [f(@)f(a+d| < eXfmax{|f(a)l, |f(a+d)[}.

(8)

To finish our proof we must show that “most of the time” |E(n)| is
smaller than the “main term” of (7); that is,

|E(n)| < |f(az)f(ay)]-
Note that this holds whenever
[E(n)| < Af. (9)
We have by Parseval and (8) that

2nlE(n)[* Y aa, (@] f(a + d)|?
2pe* N Y| f(a)
2p* NE(f?)

2p? 0.

IA A

So, the number of n for which (9) holds is at least
p(l o 2‘962)7

as claimed.

4 Proof of Theorem 2

Let
Bl = Bg = A = {al,...,ak}.

Suppose initially that 2|A|log|A| > logp, so that the hypotheses of
the second part of Lemma 3 hold. We have then that there exits d; €



di =a—>b,a,be A. Let now A; denote the set of all the elements b that

occur. Clearly,
[ A1 < 204 (log|A])?/ log p.

Keeping By = A, we reassign By = A;. So long as 2|A;|log|A| > logp
we may apply the second part of Lemma 3, and when we do we deduce that
there exists dy € A — A; having at most 20|A;|(log |A|)?/log p representa-
tionsas dy = a—b,a € A, b € A;. Let now A, denote the set of all elements

b that occur. Clearly
[ Ao < 20]A4|(log |A])?/ log p.

We repeat this process, reassigning B, = A,, then By, = A3, and so on,
all the while producing these sets A, As, ... and differences dy, ds, ..., until
we reach a set A,, satisfying

2|A,,|log |A] < logp.

We may, in fact, reach this set A,, with m = 1 if 2|A|log|A| < logp to
begin with.
It is clear that since at each step we have for ¢ > 2 that

[Ail < 20|45 |(log |A])?/logp < [Ai|(51log |A[)?/logp,

so that
|Ai| < [A](5log|A])*/(logp)".

Since we have assumed that
Al < (logp)~" (5tloglog p)~**2,
were we to continue our iteration to ¢ =t — 1 we would have
[ A < [Al(51og|A])*7?/(logp)'™" < (tloglogp)™**(log|A])** <, 1.
So, our number of iterations m satisfies
m < t—1,

for p sufficiently large.

This set A,, will have the property, by the second part of Lemma 3, that
there exists d,, € A — A, having a unique representation as d,, = a — b,
ac A beA,.

Now, we claim that there exists unique b € [F,, such that



To see this, first let b € A. Since b+ d; € A we must have that b € Aj,
by definition of A;. Then, since b + dy € A, it follows that b € A;. And,
repeating this process, we eventually conclude that b € A,,.

So, since b€ A,,, and b+d,, € A, we have d,, =a—b,a € A, b€ A,,.
But this d,, was chosen by the second part of Lemma 3 so that it has a
unique representation of this form. It follows that b € A is unique, as
claimed.

From our function f :F, — [0, 1], we define the functions g1, g2, ..., g :
F, — C via
fz(n) — e2m’dm/pf(n)‘
It is obvious that

supp(f * fx- -k frgirgek---kgpn) C supp(f* fx---xf),

where there are t convolutions on the left, and ¢ on the right; so, f appears
t —m times on the left.
We also have that

gi(a) = f(a +d;),
and therefore

(f*fx-- >I7*\91 * ook gm)(a) = f(a)t_mf(a+d1)f(@+d2) o ‘f(a+dm)-

Since there exists unique a, call it z, such that all these a + d; belong to A,
we deduce via Fourier inversion that for any n € I,

(fxfre-kgrs - kgm)(n) = e 222 f()™ f(ppdy) - - - flztdy) + E(n),
where the “error” E(n) satisfies, by the usual L? — L> bound,
[EM)| < e Yl @) < A

So, since all of | f(a)|,|f(a+dy)], ..., | f(a+dy)| are bounded from above by
Ak, we find that |E(n)| is smaller than our main term above, and therefore
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