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1 Introduction

Suppose that S ⊆ Fp, where p is a prime number. Let λ1, ..., λp be the

absolute values of the Fourier coefficients of S (to be made more precise

below) arranged as follows

Ŝ(0) = λ1 ≥ λ2 ≥ · · · ≥ λp.

Then, as is well known, one can work out, as a function of ε > 0 and a

density θ = |S|/p, an upper bound for the ratio λ2/λ1 which guarantees

that S + S covers at least (1 − ε)p residue classes modulo p. Put another

way, if S has a large spectral gap, then most elements of Fp have the same

number of representations as a sum of two elements of S, thereby making

S + S large.
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What we show in this paper is an extension of this fact, which holds

for spectral gaps between other consecutive Fourier coefficients λk, λk+1, so

long as k is not too large; in particular, our theorem will work so long as

1 ≤ k ≤ ⌈(log p)/ log 2⌉.

Furthermore, we develop results for repeated sums S + S + · · · + S.

It is worth noting that this phenomena also holds in arbitrary abelian

groups, as can be worked out by applying some results of Lev [4] and [5],

but we will not develop these here.1

The property of Fp that we exploit, is something we call a “unique

differences” property, first identified by W. Feit, with first proofs and basic

results found by Straus [7].

Before we state the main theorems of our paper, we will need to fix some

notation: First, for a function f : Fp → C, we define its normalized Fourier

transform as

f̂ : a 7→ Ez(f(z)e2πiaz/p),

where E here denotes the expectation operator, which in this context is

defined for a function h : Fp → C as

Ezh(z) := p−1Σz∈Fp
h(z).

If the function h depends on r variables, say z1, ..., zr, we define

Ez1,...,zr
h(z1, ..., zr) := p−rΣz1,...,zr∈Fp

h(z1, ..., zr).

We then will let λk denote the kth largest absolute value of a Fourier co-

efficient of f ; in other words, we may write Fp := {a1, ..., ap}, where upon

letting λi := |f̂(ai)|, we have

λ1 ≥ λ2 ≥ · · · ≥ λp.

We define the convolution of r functions f1, ..., fr : Fp → C to be:

(f1 ∗ · · · ∗ fr)(n) := Ez1,...,zr−1
f1(z1) · · ·fr−1(zr−1)fr(n − z1 − · · · − zr−1).

Finally, for a function f : Fp → C, we define the “support of f”, denoted as

supp(f) ⊆ Fp

1In some of these general groups, the results are rather poor compared with the Fp

case. For example, they are poor in the case where one fixes p and works with the additive
group Fn

p
, where one lets n → ∞. The reason is that if one fixes a large subgroup of this

group, and then lets f be its indicator function, then f will have a large spectral gap,
and yet supp(f ∗ f) will equal that subgroup, meaning supp(f ∗ f) cannot be a 1 − ε



to be the places a ∈ Fp where f(a) 6= 0.

Our main theorem of the paper, from which our results on sumsets S+S

are an easy consequence, is stated as follows:

Theorem 1 Let p be a prime number and suppose that the function f :

Fp → R≥0 does not vanish identically. If, for real ε and positive integer

k ≤ ⌈(log p)/ log 2⌉ we have λk+1 ≤ ελ2
k, then

|supp(f ∗ f)| ≥ (1 − 2θε2)p, where θ := E(f 2).

Remark 1. By letting f be the indicator function for S, we see that

θ = E(f 2) = E(f) = |S|/p, which is the density of S relative to Fp. Also,

supp(f ∗ f) is just S + S.

Remark 2. It is easy to construct functions f which have a large spectral

gap as in the hypotheses. For example, take f to be the function whose

Fourier transform satisfies f̂(0) = 1/2, f̂(1) = f̂(−1) = 1/4, and f̂(a) = 0

for a 6= 0,±1. Clearly we have f : Fp → [0, 1], and of course f has a large

spectral gap between λ3 and λ4 (λ3 = 1/4, while λ4 = 0).

Remark 3. An obvious question that one can ask regarding the above

theorem is whether it is possible to relax the condition λk+1 ≤ ελ2
k. In

particular, it would be desirable to reduce the exponent below 2. This seems

to be a difficult problem to address, as it is not even known how to improve

the exponent for the case k = 1, where a large spectral gap corresponds to

the assertion that the function f is quasirandom. An example indicating

that reducing the exponent near to 1 might be hopeless is given as follows:

Suppose that A is a random subset of Fp of size o(
√

p), then λ2 = ελ1 holds

with ε ≈ |A|−1/2, while A+A is small as compared to p; however, this is not

quite a counterexample in the sense that in this case |A + A| is still large

as compared to |A|.

By considering repeated sums, one can prove similar sorts of results,

but which hold for a much wider range of k. Furthermore, one can derive

conditions guaranteeing that (f ∗ f ∗ · · · ∗ f)(n) > 0 for all n ∈ Fp, not just

1 − ε proportion of Fp. This new theorem is given as follows:

Theorem 2 Fix t ≥ 3. Then, the following holds for all primes p suf-

ficiently large: Suppose that f : Fp → [0, 1], f not identically 0, has the

property that for some

1 ≤ k < (log p)t−1(5t log log p)−2t+2,

we have that



(Note that θ was defined differently in Theorem 1.) Then, the t-fold convo-

lution f ∗ f ∗ · · · ∗ f is positive on all of Fp.

Remark. It is possible to sharpen this theorem so that t is allowed to

depend on p in some way, though we won’t bother to develop this here.

We conjecture that it is possible to prove a lot more:

Conjecture. The logarithmic bound on k in Theorem 1 can be replaced

with an exponential bound of the sort k < nc with a constant c > 0.

This would obviously require a different sort of proof than appears in

the present paper.

2 Some lemmas

First, we will require the following standard consequence of Dirichlet’s box

principle; its proof is also standard, so we will omit it:

Lemma 1 Suppose that

r1, ..., rt ∈ Fp.

Then, there exists non-zero m ∈ Fp such that

For i = 1, ..., t,
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≤ p−1/t,

where here ||x|| denotes the distance from x to the nearest integer.

The following was first proved by Browkin, Divĭs and Schinzel [2] and is

also a consequence of much more robust results due to Bilu, Lev and Ruzsa

[1] and Lev [5] (unlike previous paper, this last paper of Lev addresses the

case of arbitrary abelian groups): 2

Lemma 2 Suppose that

B := {b1, ..., bt} ⊆ Fp.

Then, if

t ≤ ⌈(log p)/ log 2⌉,
there exists d ∈ Fp having a unique representation as a difference of two

elements of B.

2Straus [7] had a weaker form of this lemma, which had the upper bound |B| ≤
log p/ log 4 in place of |B| ≤ ⌈log p/ log 2⌉. He remarked that Feit had first brought the
problem to his attention. The first author of the paper (Croot) rediscovered a proof of
this result, as appeared in an earlier version of the present paper. Recently, Jańczak [3]
has proved some extensions of Straus’ results to linear combinations of elements of a set



Finally, we will also need the following lemma, which is a refinement of

one appearing in [6]:

Lemma 3 Suppose that

B1, B2 ⊆ Fp, where 10 ≤ |B1| ≤ p/2 and |B1| ≥ |B2|. (1)

If

2|B2| log |B1| < log p, (2)

then there exists d ∈ B1 −B2 having a unique representation as d = b1 − b2,

bi ∈ Bi; on the other hand, if

2|B2| log |B1| ≥ log p, (3)

then there exists d ∈ B1 − B2 having at most

20|B2|(log |B1|)2/ log p

representations as d = b1 − b2, bi ∈ Bi.

Proof of the lemma. Suppose that (1) and (2) hold. Then, by Lemma

1 we have that there exists m such that for every x ∈ C2 := m · B2 we

have |x| ≤ p/|B1|2; furthermore, by the pigeonhole principle there exists

an integer interval I := (u, v) ∩ Z with u, v ∈ C1 := m · B1, with |I| ≥
p/|B1| − 1, which contains no elements of B1. So, v − maxx∈C2

x has a

unique representation as a difference c1 − c2, c1 ∈ C1, c2 ∈ C2. The same

holds for B1 − B2, and so this part of our lemma is proved.

Now we suppose that (1) and (3) hold. Let B′ be a random subset of

B2, where each element b ∈ B2 lies in B′ with probability

(log p)/(3|B2| log |B1|).

Note that this is where our lower bound 2|B2| log |B1| ≥ log p comes in, as

we need this probability to be at most 1.

So long as the B′ we choose satisfies

|B′| < (log p)/(2 log |B1|), (4)

which it will with probability at least 1/3 by an easy application of Markov’s

inequality, we claim that there will always exist an element d ∈ B−B′ having

a unique representation as a difference b1 − b′2, b1 ∈ B, b′2 ∈ B′: First, note

that it suffices to prove this for the set C1 − C ′, where



where m is a dilation constant chosen according to Lemma 1, so that every

element x ∈ C ′ (when considered as a subset of (−p/2, p/2]) satisfies

|x| ≤ p1−1/|B′| < p/(3|B1|).

Now, there must exist an integer interval

I := (u, v) ∩ Z, u, v ∈ C1,

(which we consider as an interval modulo p) such that

|I| ≥ p/|C1| − 1 = p/|B1| − 1,

and such that no element of C1 is congruent modulo p to an element of I.

Clearly, then, v − maxc′∈C′ c′ has a unique representation as a difference.

Now we define the functions

ν(x) := |{(c1, c2) ∈ C1 × C2 : c1 − c2 = x}|; and,

ν ′(x) := |{(c1, c
′
2) ∈ C1 × C ′ : c1 − c′2 = x}|.

We claim that with probability exceeding 2/3,

every x ∈ Fp with ν(x) > 20|B2|(log |B1|)2/ log p, satisfies ν ′(x) ≥ 2. (5)

Note that since the sum of ν(x) over all x ∈ Fp is |B1| · |B2|, the number of

x satisfying this hypothesis on ν(x) is at most, for p sufficiently large,

|B1| · |B2|
20|B2|(log |B1|)2/ log p

=
|B1| log p

20(log |B1|)2
< |B1|, (6)

by (3) and the fact |B1| ≥ |B2|.
To see that (5) holds, fix x ∈ C1 −C2. Then, ν ′(x) is the following sum

of independent Bernoulli random variables:

ν ′(x) =

ν(x)
∑

j=1

Xj , where Prob(Xj = 1) = (log p)/(3|B2| log |B1|).

The variance of ν ′(x) is

σ2 = ν(x)Var(X1) ≤ ν(x)E(X1).

We now will need the following well-known theorem of Chernoff:

Theorem 3 (Chernoff’s inequality) Suppose that Z1, ..., Zn are indepen-

dent random variables such that E(Zi) = 0 and |Zi| ≤ 1 for all i. Let

Z := ΣiZi, and let σ2 be the variance of Z. Then,

2



We apply this theorem using Zi = Xi − E(Xi) and

δσ = ν(x)E(X1) − 1.

and then deduce that if ν(x) > 20|B2|(log |B1|)2/ log p, then

Prob(ν ′(x) ≤ 1) = Prob(Z ≤ 1 − ν(x)E(Z1)).

Noting that the quantity 1 − ν(x)E(Z1) < 0, we deduce that this equals

Prob(|Z| ≤ δσ) ≤ 2 exp
(

−δ2/4
)

≤ 2 exp

(

−(ν(x)E(X1) − 1)2

4ν(x)E(X1)

)

< 1/(3|B1|).

Clearly, then, since there are at most (6) places x where ν(x) satisfies the

hypotheses of (5), we will have that with probability exceeding 2/3 the claim

(5) holds. But we also had that (4) holds with probability at least 1/3; so,

there is an instantiation of the set B′ such that both (5) and (4) hold. Since

we proved that such B′ has the property that there is an element of x ∈ B1−
B′ having ν ′(x) = 1, it follows from (5) that ν(x) ≤ 20|B2|(log |B1|)2/ log p,

which proves the first part of our lemma.

�

3 Proof of Theorem 1

We apply Lemma 2 with

B = A = {a1, ..., ak}, so t = k.

Then, let d be as in the lemma, and let

ax, ay ∈ A

satisfy

ay − ax = d.

We define

g(n) := e2πidn/pf(n),

and note that

(f ∗ f)(n) ≥ |(g ∗ f)(n)|

So, our theorem is proved if we can show that (g ∗ f)(n) is often non-zero.

Proceeding in this vein, let us compute the Fourier transform of g ∗f : First,

we have that



So, by Fourier inversion,

(f ∗ g)(n) = e−2πiaxn/pf̂(ax)f̂(ay) + E(n), (7)

where E(n) is the “error” given by

E(n) = Σa6=ax
e−2πian/pf̂(a)f̂(a + d).

Note that for every value of a 6= ax we have that

either a or a + d lies in {ak+1, ..., ap}
=⇒ |f̂(a)f̂(a + d)| ≤ ελ2

k max{|f̂(a)|, |f̂(a + d)|}.
(8)

To finish our proof we must show that “most of the time” |E(n)| is

smaller than the “main term” of (7); that is,

|E(n)| < |f̂(ax)f̂(ay)|.

Note that this holds whenever

|E(n)| < λ2
k. (9)

We have by Parseval and (8) that

Σn|E(n)|2 = pΣa6=ax
|f̂(a)|2|f̂(a + d)|2

≤ 2pε2λ4
kΣa|f̂(a)|2

≤ 2pε2λ4
kE(f 2)

= 2pε2λ4
kθ.

So, the number of n for which (9) holds is at least

p(1 − 2θε2),

as claimed.

4 Proof of Theorem 2

Let

B1 := B2 := A = {a1, ..., ak}.

Suppose initially that 2|A| log |A| ≥ log p, so that the hypotheses of

the second part of Lemma 3 hold. We have then that there exits d1 ∈
2



d1 = a − b, a, b ∈ A. Let now A1 denote the set of all the elements b that

occur. Clearly,

|A1| ≤ 20|A|(log |A|)2/ log p.

Keeping B1 = A, we reassign B2 = A1. So long as 2|A1| log |A| ≥ log p

we may apply the second part of Lemma 3, and when we do we deduce that

there exists d2 ∈ A − A1 having at most 20|A1|(log |A|)2/ log p representa-

tions as d2 = a−b, a ∈ A, b ∈ A1. Let now A2 denote the set of all elements

b that occur. Clearly

|A2| ≤ 20|A1|(log |A|)2/ log p.

We repeat this process, reassigning B2 = A2, then B2 = A3, and so on,

all the while producing these sets A1, A2, ... and differences d1, d2, ..., until

we reach a set Am satisfying

2|Am| log |A| < log p.

We may, in fact, reach this set Am with m = 1 if 2|A| log |A| < log p to

begin with.

It is clear that since at each step we have for i ≥ 2 that

|Ai| ≤ 20|Ai−1|(log |A|)2/ log p < |Ai−1|(5 log |A|)2/ log p,

so that

|Ai| ≤ |A|(5 log |A|)2i/(log p)i.

Since we have assumed that

|A| < (log p)t−1(5t log log p)−2t+2,

were we to continue our iteration to i = t − 1 we would have

|At−1| < |A|(5 log |A|)2t−2/(log p)t−1 < (t log log p)−2t+2(log |A|)2t−2 ≪t 1.

So, our number of iterations m satisfies

m ≤ t − 1,

for p sufficiently large.

This set Am will have the property, by the second part of Lemma 3, that

there exists dm ∈ A − Am having a unique representation as dm = a − b,

a ∈ A, b ∈ Am.

Now, we claim that there exists unique b ∈ Fp such that



To see this, first let b ∈ A. Since b + d1 ∈ A we must have that b ∈ A1,

by definition of A1. Then, since b + d2 ∈ A, it follows that b ∈ A2. And,

repeating this process, we eventually conclude that b ∈ Am.

So, since b ∈ Am, and b + dm ∈ A, we have dm = a − b, a ∈ A, b ∈ Am.

But this dm was chosen by the second part of Lemma 3 so that it has a

unique representation of this form. It follows that b ∈ A is unique, as

claimed.

From our function f : Fp → [0, 1], we define the functions g1, g2, ..., gm :

Fp → C via

fi(n) := e2πidin/pf(n).

It is obvious that

supp(f ∗ f ∗ · · · ∗ f ∗ g1 ∗ g2 ∗ · · · ∗ gm) ⊆ supp(f ∗ f ∗ · · · ∗ f),

where there are t convolutions on the left, and t on the right; so, f appears

t − m times on the left.

We also have that

ĝi(a) = f̂(a + di),

and therefore

( ̂f ∗ f ∗ · · · ∗ f ∗ g1 ∗ · · · ∗ gm)(a) = f̂(a)t−mf̂(a+d1)f̂(a+d2) · · · f̂(a+dm).

Since there exists unique a, call it x, such that all these a + di belong to A,

we deduce via Fourier inversion that for any n ∈ Fp,

(f∗f∗· · ·∗g1∗· · ·∗gm)(n) = e−2πinx/pf̂(x)t−mf̂(x+d1) · · · f̂(x+dm) + E(n),

where the “error” E(n) satisfies, by the usual L2 − L∞ bound,

|E(n)| ≤ tλk+1θ
t−3Σa|f̂(a)|2 < λt

k.

So, since all of |f̂(a)|, |f̂(a + d1)|, ..., |f̂(a + dm)| are bounded from above by

λk, we find that |E(n)| is smaller than our main term above, and therefore

(f ∗ f ∗ · · · ∗ f)(n) > 0.
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