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Consider the points (x, y) ∈ Fp × Fp on the curve

y2 = f(x) := x3 + ax + b.

Hasse’s and Weil’s theorems imply that the number of such pairs (x, y) is

p + O(
√

p),

which is equivalent to saying that

|{x : f(x) = y2, for some y}| =
p

2
+ O(

√
p).

(Actually, they give the sharper upper bound 2
√

p on the size of the error
term.)

Let
g1(x) := f(x)(p−1)/2 − 1, g2(x) := f(x)(p−1)/2 + 1.

Then, to prove our theorem, it suffices to show that both g1(x) and g2(x)
have at most p/2 + O(

√
p) roots mod p; and, to prove this, we will produce

polynomials r1(x) and r2(x) such that

deg(ri(x)) ≤ pM

2
+ O(M

√
p),

and ri(x) vanishes to order M at all the mod p roots of gi(x), at least when

M ∼ c
√

p.

Since the case of producing r1(x) is nearly identical to that of producing
r2(x), we will just work with r(x) := r1(x) and g(x) := g1(x).
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1 The polynomial r(x)

We will try to find r(x) having the special form

r(x) = f(x)M(g(x)U(x) + V (x)),

where U(x) and V (x) are polynomials of degree about Mp/2. Notice that if
we can find such an r(x), we will get that for M ∼ c

√
p,

deg(r(x)) . 3M +
3(p − 1)

2
+ Mp/2 =

Mp

2
+ O(M

√
p), (1)

just as we need.

The reason for choosing this form for r(x), especially the factor f(x)M

out front, is that it allows us to take advantage of the fact that g(x) is one
less than a high power of f(x). Roughy, the reason this is so is that in the
middle of our calculations of the successive derivatives of r(x), we will need
to simplify expressions of the type f(x)M−jg′(x); and, these simplifications
can be carried out as follows

f(x)M−jg′(x) = f(x)M−jf(x)(p−3)/2f ′(x)(p − 1)/2

= f(x)M−j−1f(x)(p−1)/2f ′(x)(p − 1)/2

= f(x)M−j−1(g(x) + 1)f ′(x)(p − 1)/2.

It follows (after some work), that if r(x) has the above form, then its
successive derivatives take the form

djr(x)

dxj
= f(x)M−j(g(x)Uj(x) + Vj(x)), (2)

where Uj(x) and Vj(x) are polynomials of degree at most

deg(U(x)) + 2j = deg(V (x)) + 2j. (3)

In order that r(x) vanish to order M at all mod p roots of g(x), it suffices
to require 1

For all j = 0, 1, ..., M − 1,
djr(x)

dxj
≡ 0 (mod p, xp − x, g(x)).

1Note that the ideal (p, g(x), xp−x) is the same as (p, Π(x)), where Π(x) is the product
(x − ξ) over all the mod p roots ξ of g(x).
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One thing that would guarantee this is

For all j = 0, 1, ..., M − 1, Vj(x) ≡ 0 (mod p, xp − x). (4)

If we consider the single congruence

Vj(x) ≡ 0 (mod p, xp − x),

we note that since the coefficients of Vj are linear combinations of the coeffi-
cients of U(x) and V (x), this single congruence determines p different linear
equations in these coefficients of U and V . 2 So, in total, the M congruences
determines Mp linear equations in the coefficients of U and V . These equa-
tions are homogeneous; and so, as long as the number of coefficients exceeds
the number of equations, we are guaranteed a solution to (4).

Since the U and V have degree about Mp/2, the number of free coeffi-
cients in both U and V is about Mp, and in fact can be made a tiny bit
bigger, so that all the Vj vanish mod p, xp − x.

2 We are done, right ?

It would seem that this finishes the proof of our theorem; however, one thing
that could happen, which is what makes the proof a little more complicated,
is that we could have

g(x)U(x) + V (x) = 0, (5)

even though the coefficients of U and V are not identically 0. For example,
we could have U(x) = xp − x and V (x) = −(xp − x)g(x).

The way to keep this from happening is to restrict U and V to have a
very special form, which disallows (5). You might think that by restricting
U and V to have a special form, we would have fewer free coefficients to
play with in our proof, and so we would not be able to satisfy all the Mp
linear equations, and you’d be right if indeed we had Mp linear equations;
however, it will turn out that the special form we work with will involve U
and V having about Mp/4 free parameters each, or about Mp/2 in total,
while the number of linear equations will only be Mp/2, not Mp as we had
before.

2The reason it is p linear equations, and not deg(Vj) linear equations is that when we
mod out by xp − x we are left with a polynomial of degree smaller than p.
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Basically, what we do is choose U and V so that the highest power in
g(x)U(x) cannot be congruent mod p to the highest power in V (x). One way
to do this is require all the powers of x in both U(x) and V (x) to lie in the
interval [0, (p − 5)/2] modulo p. For then, since the highest power of

g(x) = f(x)(p−1)/2 − 1

is 3(p− 1)/2, we have that the higest power of x in g(x)U(x) must lie in the
mod p interval

3(p − 1)

2
+ [0, (p − 5)/2] ≡ [(p − 3)/2, p − 4] (mod p),

while the highest power of x in V (x) lies in the mod p interval [0, (p− 5)/2].
It follows that

g(x)U(x) − V (x) 6= 0,

so long as U(x) and V (x) are not identically 0.

Another way of expressing the fact that all the powers of U and V lie in
[0, (p − 5)/2] modulo p is to say that U and V have the following forms:

U(x) = k0(x) + xpk1(x) + x2pk2(x) + · · ·+ xNpkN(x),

and
V (x) = `0(x) + xp`1(x) + x2p`2(x) + · · ·+ xNp`N(x),

where

N = [M/2] + 2; and, for i = 0, ..., N, deg(ki), deg(`i) ≤
(p − 5)

2
.

3 The Proof Proper

Even though we have restricted U and V to have the special form above, we
still have that (1), (2) and (3), all hold. The final extra detail we need in
order to complete our proof is to show that Vj(x) mod xp − x (and p) has
degree at most about p/2. If so, we will have only about half as many linear
equations as we had before, which is good, since we also have only about half
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the number of free coefficients in our U(x) and V (x) of special form. We will
need to understand better what form Vj(x) takes: First,

r′(x) = Mf(x)M−1f ′(x)(g(x)U(x) + V (x))

+ f(x)M(U ′(x)g(x) + g′(x)U(x) + V ′(x)).

Using the aforementioned fact

f(x)Mg′(x) = f(x)M−1(g(x) + 1)f ′(x)(p − 1)/2,

we find that
r′(x) = f(x)M−1(g(x)U1(x) + V1(x)),

where

V1(x) = Mf ′(x)V (x) + f ′(x)U(x)(p − 1)/2 + f(x)V ′(x).

So, the powers of x that appear in V1(x) will lie in the interval [0, (p−5)/2+
2] = [0, (p − 1)/2] modulo p, 3 which means on modding out by xp − x they
will lie in [0, (p − 1)/2 + N ]; and, in general, one can show that the powers
of x that appear in Vj(x) upon modding out by xp − x, will lie in

[0, (p − 5)/2 + 2j + N ] modulo p.

Having all the Vj(x) be congruent to 0 (mod p, xp − x) then gives us a
system of

M−1∑

j=0

((p − 3)/2 + 2j + N) =
M(p − 3)

2
+ M(M − 1) + MN.

homogeneous linear equations. Fortunately, the number of free variables we
have among the ki(x) and `i(x) that make up U(x) and V (x) is

2(N + 1)(p − 3)/2 >
M(p − 3)

2
+ M(M − 1) + MN,

for M ∼ √
p/2. So, the homogeneous system of equations can be satisfied,

and our theorem is proved.

3Note that the powers appearing in V ′(x) lie in [0, (p−7)/2] mod p, not [−1, (p−7)/2],
because the derivative of terms cxkp is 0 mod p.
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