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1 Introduction

Of central importance to the subject of additive combinatorics is that of
determining when a subset of the integers {1, ..., N} contains a k-term arith-
metic progression. This subject has a long history (see [9, ch. 10-11]). In
this paper we consider a specific problem in this area, posed by B. Green [1].
Before we state this problem, we require some notation:

Given a function f : Fn
p → [0, 1], where Fn

p denotes the vector space of
dimension n over Fp, define

E(f) = p−nΣm∈Fn
p
f(m).

Define
Λ3(f) = p−2nΣm,df(m)f(m + d)f(m + 2d).

In the case where f is an indicator function for some set S ⊆ Fn
p , we have

that Λ3(f) is the normalized count of the number of three-term arithmetic
progressions m, m + d, m + 2d ∈ S. Note that Λ3(f) > 0, unless E(f) = 0,
because of the contribution of trivial progressions where d = 0.

Green’s problem is as follows:

Problem. Given 0 < α ≤ 1, suppose S ⊆ Fp satisfies |S| ≥ αp, and has the
least number of three-term arithmetic progressions. What is Λ3(S) ?

It seems that the only hope of answering a question like this is to under-
stand the structure of these sets S, as Green and Sisask did in [5] for values
of α near to 1.1 In this paper we address the analogous problem in Fn

p , where
p is held fixed, and n tends to infinity. In some ways this context is simpler
to work with than the Fp one, and it is now standard practice to first work
out problems in Fn

p . See Green [4] for a discussion of this philosophy.
The results we prove are not of a type that would allow us to deduce

Λ3(S), but they do reveal that these sets S are very highly structured. With
some work, such results can perhaps be deduced from the work of Green [3],

1Actually, they considered the analogous problem of determining the maximal number

of three-term progressions in a set of a given density; however, through an application of

Lemma 3 below this can be turned into a question about the minimal number of three-term

progressions.
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which makes use of regularity lemma ideas (resulting in bounds that only
work for densities α ≫ 1/ log∗(n)), but our theorems below are proved using
basic harmonic analysis, and give bounds that hold for densities α ≫ 1/ logn
(see the remark after Theorem 1 and also Corollary 1).

We will first introduce a definition which will make the theorems below
a little easier to state.

Definition. We say that a subset S ⊆ Fn
p is a critical set if Λ3(S) is minimal

among all sets of size at least |S|; that is, if |T | ≥ |S|, then Λ3(T ) ≥ Λ3(S).

Also, we introduce here a certain function ∆ which will make many of
our main theorems below easier to state:

∆ = ∆(ǫ, p) := (ǫ5/211p2)p−12/ǫ, (1)

Theorem 1 Fix a characteristic p ≥ 3 prime. Suppose that n > n0(p), that
S is a critical set of Fn

p , and that cp/ log n ≤ ǫ ≤ 1 (where cp depends only
on p).

Then, there exists a subspace

W ≤ F
n
p , dim(W ) ≥ n − ∆−2 (2)

and a set A, such that

|S ∆ (A + W )| ≤ 2ǫpn.2

Remark. Note that the conclusion is non-trivial when |S| = αpn, where
α > 2ǫ.

The conclusion of this theorem is telling us that, roughly, S is a union of a
small number of cosets of some large-dimensional subspace W . An immediate
corollary of this theorem, which is perhaps helpful for understanding what it
says, is given as follows:

Corollary 1 Fix a characteristic p prime, and a real number 0 < α ≤ 1.
Let S be a subset of Fn

p with Λ3(S) minimal, subject to the constraint

|S| ≥ αpn.

2The notation B∆C means the symmetric difference between B and C.
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Then, there exists a subgroup (or subspace)

W ≤ F
n
p , dim(W ) = n − o(n),

and a set A, such that

|S ∆ (A + W )| = o(pn).

In fact we get this conclusion when α is allowed to depend on n; indeed,
the conclusion holds if α−1 = o(log n).

Our second theorem is a slighly more abstract version of Theorem 1,
where instead of sets S, we have a function f : Fn

p → [0, 1]. We have not
bothered to optimize the conclusion of the theorem (to the same extent as we
did Theorem 1) given the method of proof, though much more can certainly
be proved:

Theorem 2 Fix a characteristic p ≥ 3 prime, a density 0 < α ≤ 1, and any
function ξ(n) < n/2 (for n ≥ 3) that tends arbitrarily slowly to infinity with
n. Suppose that

f : F
n
p → [0, 1]

is such that Λ3(f) is minimal, subject to the constraint that

E(f) ≥ α.

Then, there exists a subspace

W ≤ F
n
p , dim(W ) ≥ n − ξ(n),

such that f is approximately an indicator function on cosets of W , in the
following sense: There is a function

h : F
n
p → {0, 1},

which is constant on cosets of W (which means h(a) = h(a + w) for all
w ∈ W ), such that

E(|f(m) − h(m)|) ≪ 1/(log ξ(n))1/2.
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It would seem that Theorem 1 is a corollary of some refined version of
Theorem 2. This may be the case, but in later sections we will prove a
third theorem (Theorem 4), from which we will deduce both Theorem 1 and
Theorem 2.

An important point worth making, before we proceed with the proofs, is
what more we would like our theorems above to say. We state this in the
form of a conjecture.

Conjecture. Fix p ≥ 3 prime, and 0 < α ≤ 1. There exists an integer m ≥ 1
such that the following holds for n sufficiently large: Suppose f : Fn

p → [0, 1]
minimizes Λ3(f), subject to the constraint E(f) ≥ α. Then, there exists a
subspace W of codimension m (dimension n−m) such that f is constant on
cosets of W .

One sees that this conjecture somewhat resembles Theorem 2 above, but
is different in two important ways: First, the codimension m is fixed once
p and α are decided – it does not grow as n → ∞ or ǫ → 0; second, the
conclusion says that g is exactly constant on cosets of W , rather than only
approximately constant on cosets of W . This conjecture appears to be rather
difficult to prove, and would require new ideas, perhaps in addition to the
ones in the present paper.

2 Proofs

2.1 Additional Notation

We will require a little more notation: First, given a set S ⊆ Fn
p , through an

abuse of notation we will define S(x) to be the indicator function for the set
S; that is,

S(x) := 1S(x) =

{

1, if x ∈ S;
0, if x 6∈ S.

Given any three subsets U, V, W ⊆ Fn
p , define

T3(f |U, V, W ) = Σm∈U,m+d∈V,m+2d∈W f(m)f(m + d)f(m + 2d).

We note that this implies T3(1|U, U, U) is the number of three-term pro-
gressions belonging to a set U . If we omit U, V, W , it is understood that
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U = V = W = Fn
p ; further, given a set S, we let T3(S) denote the number of

triples (m, m + d, m + 2d) ∈ S3.

Given a vector v ∈ Fn
p , we will write

v = (v1, ..., vn)

to mean that
v = v1e1 + · · ·+ vnen,

where e1, ..., en is the standard basis for Fn
p . Given another such vector w =

(w1, ..., wn), we will define the dot-product

v · w = v1w1 + · · ·+ vnwn ∈ Fp.

As in the case of R and C vector spaces we will have for a subspace
W ⊆ Fn

p that

dim(W ) + dim(W⊥) = n. (3)

To see this, first note that dim(W⊥) is the rank of the right-nullspace of the
Fp-matrix whose rows are any dim(W ) basis vectors for W . Then, from the
rank-nullity theorem (rank+nullity= n) for matrices, which still holds in Fp

as it does in R, along with the fact that the matrix has rank dim(W ), we
have that (3) now follows.

We also note that from the involution (W⊥)⊥ = W , we have that W⊥

determines W uniquely. To prove this involution, first observe that (W⊥)⊥

has the same dimension as W from (3). And so, it suffices to show W ⊆
(W⊥)⊥, which follows tautologically from the definition of the orthogonal
complement of a subspace.

Given f : Fn
p → C, we will define the Fourier transform of f at a ∈ Fn

p by

f̂(a) = Σmf(m)e2πia·m/p.

(Note: We think of the a ·m as an element of Z through the obvious embed-
ding Fp → {0, 1, 2, ..., p− 1} ⊂ Z.)

A key theorem that we will need is Parseval’s identity. Before we state
it, we define the L2 norm of a function f : Fn

p → C to be

‖f‖2 =
(

p−nΣm|f(m)|2
)1/2

.
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Theorem 3 (Parseval’s Identity) Suppose that f : Fn
p → C. Then,

‖f̂‖2
2 = pn‖f‖2

2.

Given functions
f, g : F

n
p → C,

we define the convolution

(f ∗ g)(m) := Σtf(t)g(m − t).

We then have that
(̂f ∗ g)(a) = f̂(a)ĝ(a).

Given a subspace W of Fn
p , and given a function

f : F
n
p → [0, 1],

we define the “W -smoothed version of f” as follows:

fW (m) =
1

|W |
(f ∗ W )(m) =

1

|W |
Σw∈Wf(m + w).

This function has a number of properties: First, we note that fW (m) is
constant on cosets of W , in the sense that

for all w ∈ W, fW (m) = fW (m + w).

Thus, it makes sense to write

fW (m + W ) := fW (m).

We also have that
E(fW ) = E(f). (4)

And finally, the Fourier transforms f̂ and f̂W are related via

f̂W (x) =

{

f̂(x), if x ∈ W⊥;
0, if x 6∈ W⊥.

(5)
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2.2 Theorem 4 and Lemma 1

Theorems 1 and 2 are corollaries of Theorem 4 and Lemma 1 listed below.
Before we state them, let m(δ, Fn

p ) denote the minimal possible Λ3(f) out of
all f : Fn

p → [0, 1] with Ef = δ.

Theorem 4 Fix a prime p ≥ 3 and 0 < ǫ ≤ 1, and assume that

n > ∆−2 +
log(4p/ǫ)

log p
. (6)

Suppose that f : Fn
p → [0, 1] is almost minimal in Λ3 in the sense that

Λ3(f) ≤ m(Ef, Fn
p ) + ∆.

Then, there is a subspace W of codimension at most ∆−2 such that

E(|f(m) − fW (m)|) ≤ ǫ.

Lemma 1 The following holds for n sufficiently large: Suppose that f :
Fn

p → [0, 1]. Then, there exists an indicator function g : Fn
p → {0, 1},

such that
E(g) ≥ E(f), |Λ3(g) − Λ3(f)| ≤ p−n/3, (7)

and such that for every subspace W of codimension at most n/4 we have that
for every m ∈ Fn

p ,

|gW (m) − fW (m)| < p−n/12. (8)

2.3 Proof of Lemma 1

In order to prove this lemma we will need to use a theorem of Hoeffding (see
[6] or [7, Theorem 5.7])

Proposition 1 Suppose that z1, ..., zr are independent real random variables
with |zi| ≤ 1. Let µ = E(z1 + · · ·+ zr), and let Σ = z1 + · · · + zr. Then,

P(|Σ − µ| > rt) ≤ 2 exp(−rt2/2).
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Proof of the Lemma. The proof of this lemma is standard: Given f as
in the theorem above, let g0 be a random function from Fn

p to {0, 1} (which
can be thought of as a sequence of random variables g0(a1), ..., g0(apn), where
a1, ..., apn run through the elements of our vector space), where g0(m) = 1
with probability f(m), and equals 0 with probability 1 − f(m); moreover,
g0(m) is independent of all the other g0(m

′). Then, one can easily show that
with probability 1 − o(1),

∣

∣p−nΣmg0(m) − E(f)
∣

∣ , |Λ3(g0) − Λ3(f)| < p−n/3/2. (9)

2.3.1 Comment about the second inequality

Both of these can be proved using Chebyshev’s inequality, thought the second
one here requires a little explaining: First, let

Λ′
3(f) := p−2nΣn,d∈Fn

p ,d6=0f(n)f(n + d)f(n + 2d).

Note that for f : Fn
p → [0, 1], Λ′(f) differs from Λ(f) by an amount at most

p−n, so that it suffices to show that |Λ′
3(g0) − Λ′

3(f)| < p−n/3/2 − p−n holds
with probability 1 − o(1).

We can treat Λ′
3(g0) − Λ′

3(f) as a sum of the random variables

zx,d := p−2n(g0(x)g0(x + d)g0(x + 2d) − f(x)f(x + d)f(x + 2d)),

so that
Λ′

3(g0) − Λ′
3(f) = Σx,d∈Fn

p ,d6=0zx,d.

Although these random variables are not independent, they almost are. Note
first that if d 6= 0, then Ezx,d = 0, so that

Var(Λ′
3(g0) − Λ′

3(f)) = E((Σx,d∈Fn
p ,d6=0zx,d)

2)

= Σx1,d1,x2,d2∈Fn
p ;d1,d2 6=0E(zx1,d1

zx2,d2
).

Now, so long as {x1, x1 + d1, x1 +2d1} and {x2, x2 + d2, x2 +2d2} are disjoint
we will have zx1,d1

and zx2,d2
are independent, meaning that

E(zx1,d1
zx2,d2

) = E(zx1,d1
)E(zx2,d2

) = 0;

and otherwise, if we do not have independence, we at least will have an upper
bound of p−4n on E(zx1,d1

zx2,d2
). Now, for each variable zx,d there can be at

most O(pn) other variables dependent on zx,d; and so,

Var(Λ′
3(g0) − Λ′

3(f)) ≤ p−4np2nO(pn) ≪ p−n.
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Clearly, then, by Chebyshev’s inequality that P(|X − µ| ≥ tσ) ≤ 1/t2 for
any t > 0, where X is a random variable having mean µ and variance σ2, we
have that

P(|Λ′
3(g0) − Λ′

3(f)| > p−n/3/2 − p−n) ≪ p−n/(p−n/3)2 < p−n/3;

and likewise for Λ3 in place of Λ′
3.

2.3.2 Continuation of the proof of Lemma 1

We furthermore claim that with probability 1−o(1) the following holds: For
every subspace W of codimension at most n/4, and every m ∈ Fn

p ,

|(g0)W (m) − fW (m)| ≤ p−n/3/2. (10)

This can be seen as follows: For a fixed W , and fixed m ∈ Fn
p , we need

an upper bound on the probability that

|(g0)W (m) − fW (m)| > p−n/3/2.

This is the same as
|Σ| > p−n/3|W |/2,

where

Σ = Σw∈Wzw(m), where zw(m) = g0(m + w) − f(m + w).

Note that all the zw(m) are independent and satisfy |zw(m)| ≤ 1 and E(zw(m)) =
0. So, from Proposition 1 we deduce that

P(|Σ| > |W |p−n/3/2) ≤ 2 exp(−|W |p−2n/3/8).

Now, since the number of such subspaces W is at most the number of se-
quences of n/4 possible basis vectors for W⊥ (see section 2.1 for discussion
on how W⊥ uniquely determines W ), which is at most pn2/4, we deduce that
the probability that there exists a subspace W of codimension at most n/4
satisfying

|(g0)W (m) − fW (m)| > p−n/3/2

is

≤ 2pn2/4 exp(−p−2n/3|W |/8) ≤ 2pn2/4 exp(−p−2n/3p3n/4/8) = o(1/pn).
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The probability that this holds for some m ∈ Fn
p is therefore o(1). Thus, (10)

holds for all such W and m ∈ Fn
p with probability 1 − o(1/pn).

We deduce now that there is an instantiation of g0, call it g1, such that
both (9) and (10) hold for all W of codimension at most n/4 and all m ∈ Fn

p .

Then, by reassigning at most p2n/3/2 places m where g1(m) = 0 to the value
1, we arrive at a function g satisfying (7) and (8) upon noting that each
alteration of g1(m) from 0 to 1 affects Λ3(g1) by an amount at most p−n. Since
changing at most p2n/3/2 values affects Λ3(g1) by an amount at most p−n/3/2,
and changes (g1)W (m) by an amount at most |W |−1p2n/3/2 ≤ p−n/12/2, we
have that g satisfies the properties claimed by the lemma. �

Proof of Theorem 1. To prove Theorem 1, we begin by letting f be the
indicator function for the set S.

Now suppose that

E(|f(m) − fW (m)|) ≤ ǫ, (11)

for some subspace W of codimension at most ∆−2. Let h(m) be fW (m)
rounded to the nearest integer. Clearly, h(m) is constant on cosets of W ,
and from the fact that

|h(m) − fW (m)| ≤ |f(m) − fW (m)|,

we deduce that

E(|f(m) − h(m)|) ≤ E(|h(m) − fW (m)|) + E(|f(m) − fW (m)|)

≤ 2E(|f(m) − fW (m)|)

≤ 2ǫ.

But since h is constant on cosets of W , and only assumes the values 0 or 1,
we deduce that h is the indicator function for some set of the form A + W .
Thus, we deduce

|S ∆ (A + W )| ≤ 2ǫpn,

where W has dimension at least n−∆−2. This then proves Theorem 1 under
the assumption (11).

Next, suppose that

E(|f(m) − fW (m)|) > ǫ. (12)
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for every subspace W of codimension at most ∆−2. Then, from the contra-
positive of Theorem 4, we have that

Λ3(f) > m(E(f), Fn
p) + ∆.

Let h : Fn
p → [0, 1] be any function satisfying

E(h) = E(f), and Λ3(h) = m(E(f), Fn
p ),

Then, applying Lemma 1 (using f = h) we find there exists g : Fn
p → {0, 1}

satisfying
E(g) ≥ E(h) = E(f);

and,
Λ3(g) ≤ Λ3(h) + p−n/3 < Λ3(f) − ∆ + p−n/3.

If we let S ′ be the set for which g is an indicator function, then one sees that
S ′ has fewer three-term arithmetic progressions than does S, while |S ′| ≥ |S|,
provided that

∆ > p−n/3.

Working through the definition of ∆ in (1) we find that this holds provided
that

ǫ ≫p 1/n. (13)

This inequality is certainly is true, since we have assumed ǫ ≥ cp/ log n.
We now arrive at a contradiction, since we have assumed our set S has

the minimal number of three-term arithmetic progressions among all sets at
least αpn elements, and yet S ′ has even fewer. �

Proof of Theorem 2. Let

g(m) : F
n
p → {0, 1},

where g(m) is as given in Lemma 1. Note that this implies that

E(g) ≥ E(f), Λ3(g) ≤ Λ3(f) + p−n/3,

and that for any subspace W of codimension at most n/4,

|gW (m) − fW (m)| ≤ p−n/12. (14)
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Let ǫ > 0 be such that

∆−2 = ξ(n) < n/2. (15)

Note that this implies

1/ log ξ(n) ≪ ǫ ≪ 1/ log ξ(n),

and ∆ will then satisfy the inequality (6), which will be important when we
go to apply Theorem 4.

Suppose that there exists a subspace W of codimension at most ∆−2 such
that

E(|g(m) − gW (m)|) ≤ ǫ. (16)

Then, if we let h(m) equal fW (m) rounded to the nearest integer, we will
have that h(m) is constant on cosets of W ; and, we will have from (14) that

E(|h(m) − fW (m)|) ≤ E(|g(m) − fW (m)|)

≤ E(|g(m) − gW (m)|) + p−n/12

≤ ǫ + p−n/12. (17)

Let V be any complementary subspace of W , so

F
n
p = V ⊕ W.

From (17) we know that at most

(ǫ1/2 + ǫ−1/2p−n/12)|V |

vectors v ∈ V satisfy
|h(v) − fW (v)| > ǫ1/2.

Let V ′ ⊆ V be those v ∈ V satisfying the reverse inequality

|h(v) − fW (v)| ≤ ǫ1/2.

Suppose v ∈ V ′ and h(v) = 0. Then, fW (v) ≤ ǫ1/2, and we have

Σm∈v+W |f(m) − h(m)| = |W |fW (v) ≤ |W |ǫ1/2. (18)

On the other hand, if v ∈ V ′ and h(v) = 1, then fW (v) ≥ 1 − ǫ1/2, and so

Σm∈v+W |f(m) − h(m)| = |W |(1 − fW (v)) ≤ |W |ǫ1/2. (19)
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Combining (18) with (19) we deduce that

E(|f(m) − h(m)|) ≤ ǫ1/2 + (|V | − |V ′|)|V |−1

≤ 2ǫ1/2 + ǫ−1/2p−n/12

≪ 1/(log ξ(n))1/2. (20)

Our theorem is now proved in this case (assuming there exists a subspace W
satisfying (16) ).

To complete the proof, we will assume that there are no subspaces of
codimension at most ∆−2 satisfying (16). We deduce from the contrapositive
of Theorem 4 (using f = g in that case) that

Λ3(g) > m(E(g), Fn
p ) + ∆ ≥ Λ3(f) + ∆ ≥ Λ3(g) − p−n/3 + ∆.

This is a contradiction provided

∆ ≥ p−n/3,

which it is, by (15). Our theorem is now proved. �

3 Proof of Theorem 4

We will prove the contrapositive; so, we begin by assuming f : Fn
p → [0, 1]

has the property that for every subspace W of codimension at most ∆−2,

E(|f(m) − fW (m)|) > ǫ. (21)

And then we will show that

Λ3(f) > m(Ef, Fn
p ) + ∆. (22)

As is well-known (see [9, Proposition 10.11]; note the difference in nor-
malizations, and how this leads to the factor p−3n in our formula),

Λ3(f) = p−3nΣa∈Fn
p
f̂(a)2f̂(−2a).
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If we let A denote the set of all a ∈ Fn
p where

|f̂(a)| > ∆pn,

then we clearly have

Λ3(f) = p−3nΣa∈Af̂(a)2f̂(−2a) + E , (23)

where, by Parseval,
|E| ≤ ∆p−n‖f̂‖2

2 ≤ ∆. (24)

A simple application of Parseval’s identity also shows that |A| is small: We
have

|A|∆2p2n < pn‖f̂‖2
2 ≤ p2n,

which implies
|A| < ∆−2.

Let V be the subspace of Fn
p generated by the elements of A, and then

let W = V ⊥. In general, we will not have that Fn
p = V ⊕ W , but that does

not matter for the argument that follows.
From (5) and (23) (along with the fact that (V ⊥)⊥ = V , as discussed in

section 2.1), we deduce that

Λ3(fW ) = p−3nΣa∈Af̂W (a)2f̂W (−2a) + p−3nΣFn
p\A

f̂W (a)2f̂W (−2a)

= p−3nΣa∈Af̂(a)2f̂(−2a) + E ′

= Λ3(f) + E ′ − E , (25)

where
E ′ = p−3nΣFn

p\A
f̂W (a)2f̂W (−2a).

Now, by (5) again we find (by similar ideas as used in (24)) that

|E ′ − E| ≤ p−3n
∑

a∈Fn
p \A

|f̂(a)2f̂(−2a)| ≤ ∆p−n‖f‖2
2 ≤ ∆.

Substituting this in to (25), we deduce that

Λ3(fW ) ≤ Λ3(f) + ∆. (26)
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Since W is an additive subgroup of Fn
p , we can write Fn

p as a union of its
cosets, and for these cosets we will use the standard representation given by

u + W, where v ∈ U,

where U is any complementary subspace of W , satisfying

F
n
p = U ⊕ W.

This representation has the following important property.

Lemma 2 Suppose that h : Fn
p → [0, 1]. Then,

T3(h) = Σu1,u2,u3∈U

u1+u3=2u2

T3(h|u1 + W, u2 + W, u3 + W ).

Proof. The lemma will follow if we can just show that u1+w1, u2+w2, u3+w3,
u1, u2, u3 ∈ V and w1, w2, w3 ∈ W , are in arithmetic progression implies
u1, u2, u3 are in arithmetic progression: If

(u1 + w1) + (u3 + w3) = 2(u2 + w2),

then
u1 + u3 − 2u2 = −w1 − w3 + 2w2.

Now, as U ∩ W = {0}, we deduce that

u1 + u3 − 2u2 = 0,

whence u1, u2, u3 are in arithmetic progression. �

Now let

U ′ := {u ∈ U : fW (u + W ) ∈ [ǫ/4, 1 − ǫ/4]}; (27)

that is, these cosets are all the places where fW is not “too close” to being
an indicator function.
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3.1 Construction of the Function g

To construct the function g with the properties claimed by our Theorem, we
start with the following standard lemma (see [2, Lemma 5]).

Lemma 3 Suppose h1 : Fn
p → [0, 1], let β = E(h1), and let h2(n) = 1−h1(n).

Then,
Λ3(h1) + Λ3(h2) = 1 − 3β + 3β2.

Now, let ℓ be the unique integer satisfying

4/ǫ ≤ pℓ < 4p/ǫ,

and let S be any subspace of W of codimension ℓ relative to W (that is,
dim(S) = dim(W )− ℓ). We note that such subspaces S exist to choose from,
as W has dimension at least ℓ once n is sufficiently large, by virtue of the
bound (6), along with the fact that W has codimension at most ∆−2.

Let T be the set complement of S relative to W , and set

β =
|T |

|W |
=

|W | − |S|

|W |
= 1 − p−ℓ ≥ 1 − ǫ/4,

which is the density of T relative to W . Then, from the above lemma, we
deduce that

T3(S) + T3(T ) = (1 − 3β + 3β2)|W |2.

T3(S) clearly equals (1−β)2|W |2, because given any pair of elements m, m+
d ∈ S, since S is a subspace we also must have m + 2d ∈ S; and, note that
there are (1 − β)2|W |2 ordered pairs m, m + d in S. Thus, we deduce

T3(T ) = (2β2 − β)|W |2.

We now define the function g : Fn
p → [0, 1] as follows: Given u ∈ U, w ∈

W , we let

g(u + w) =

{

fW (u), if u 6∈ U ′;
β−1T (w)fW (u), if u ∈ U ′.

It is easy to show that

E(g) = E(fW ) = E(f).
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We also observe, from Lemma 2, that

T3(g) = Σu1,u2,u3∈U

u1+u3=2u2

T3(g|u1 + W, u2 + W, u3 + W ).

This sum has eight types of terms, according to whether each of u1, u2, u3 lie
in U ′ or not.

First, consider the case where all of

u1, u2, u3 ∈ U ′. (28)

In this case we have

T3(g|u1 + W, u2 + W, u3 + W ) = β−3fW (u1)fW (u2)fW (u3)T3(T )

= fW (u1)fW (u2)fW (u3)|W |2(2β−1 − β−2)

≤ fW (u1)fW (u2)fW (u3)|W |2(1 − p−2ℓ)

< fW (u1)fW (u2)fW (u3)|W |2(1 − ǫ2/16p2).

This last inequality follows from the fact that

pℓ < 4p/ǫ.

Now, as

T3(fW |u1 + W, u2 + W, u3 + W ) = fW (u1)fW (u2)fW (u3)|W |2,

we deduce that if (28) holds, then

T3(g|u1 +W, u2 +W, u3 +W ) < T3(fW |u1 +W, u2 +W, u3 +W )(1−ǫ2/16p2).

On the other hand, if any of u1, u2, u3 fail to lie in U ′, then we will get
that

T3(g|u1 + W, u2 + W, u3 + W ) = T3(fW |u1 + W, u2 + W, u3 + W ).

To see this, consider all the cases where u1 fails to lie in U ′. In this case, we
clearly have

T3(g|u1 + W, u2 + W, u3 + W ) = Σm1∈u2+W,m2∈u3+WfW (u1)g(m1)g(m2)

= fW (u1)(|W |2fW (u2)fW (u3))

= T3(fW |u1 + W, u2 + W, u3 + W ).

18



The cases where u2 or u3 fail to lie in U ′ are identical to this one.
Putting together the above observations we deduce that

T3(g) < T3(fW ) − (ǫ2/16p2)Σu1,u2,u3∈U′

u1+u3=2u2

T3(fW |u1 + W, u2 + W, u3 + W )

≤ T3(fW ) − (ǫ5/1024p2)|W |2T3(U
′). (29)

This last inequality follows from the fact that fW (u) ≥ ǫ/4 for u ∈ U ′.

3.2 A Lower Bound for |U ′|

In order to give a lower bound for T3(U
′), we will first need a lower bound

for |U ′|.
We begin by noting that if u belongs to U , but not U ′, then either fW (u) <

ǫ/4 or fW (u) > 1 − ǫ/4. Suppose the former holds. Then, we have

Σm∈u+W |f(m) − fW (m)| ≤ |W |fW (u) +
∑

m∈u+W

f(m) = 2|W |fW (u)

< ǫ|W |/2. (30)

On the other hand, if fW (u) > 1 − ǫ/4, then we have

Σm∈u+W |f(m) − fW (m)| ≤ Σm∈u+W (1 − f(m)) + Σm∈u+W (1 − fW (m))

= 2|W | − 2|W |fW (u)

< ǫ|W |/2. (31)

Putting together (30) and (31) we deduce that

Σu∈U\U ′Σm∈u+W |f(m) − fW (m)| < ǫ|W ||U |/2.

We also have the trivial upper bound

Σu∈U ′Σm∈u+W |f(m) − fW (m)| ≤ |W ||U ′|.

Adding these together and dividing by |W ||U | gives

|U |−1(|U ′| + ǫ|U |/2) > E(|f(m) − fW (m)|) > ǫ.

(The second inequality is our assumption (21).) It follows that

|U ′| > ǫ|U |/2. (32)
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3.3 Conclusion of the proof

Using our lower bound for |U ′|, we will need the following theorem from [9,
10.17] (specialized to our problem) to obtain a lower bound for T3(U

′):

Theorem 5 Suppose that S ⊆ U ⊆ Fn
p satisfies |S| = α|U |, where U is a

subspace. Then,
T3(S) ≥ p−6/α|U |2.

From Theorem 5 and (32) we deduce that

T3(U
′) ≥ p−12/ǫ|U |2.

Combining this with (29), we deduce that

T3(g) < T3(fW ) − 2∆p2n.

This, along with (26) implies

Λ3(g) < Λ3(fW ) − 2∆ ≤ Λ3(f) − ∆,

which proves (22), and therefore the theorem.
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