An Estimate from Class

January 17, 2007

Here I give a writeup of one of the simple estimates we saw in class, namely
that if ¢ is some positive integer, then the number of integers 1 < n < z that
are coprime to ¢ satisfies
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where 7(q) is the number of divisors of q.

The proof of this simple fact is via inclusion-exclusion: Given a collection
of sets Si, ..., Sg, the number of elements in their union is
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So, if some number ¢ has the prime factors p, ..., px, and if we let S; be the
set of all n < x that are divisible by p;, then the set of n < x that have a
common prime factor with ¢ is S; U --- U Sk. It follows that the number of
integers n < x that are coprime to ¢ is
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We need to estimate the sizes of these intersections: The set S; N---NSj,
is all those n < z that are simultaneously divisible by p;,, ..., p;,; and so,

xr
s - ||
Djy - Py

1



Noting then that
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where p(d) is the mobius function, we deduce
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This sum over the divisors d of ¢ is a multiplicative function, and can easily
be seen to be ¢(g)/q. One way to see this is to note that this sum is 1/¢
times the convolution of x4 with the identity function ¢ : m — m; we have seen
before that this convolution is just ¢(q), and so our sum is indeed ¢(q)/q.

Putting everything together, we deduce that
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as claimed.



