

An Estimate from Class

January 17, 2007

Here I give a writeup of one of the simple estimates we saw in class, namely that if q is some positive integer, then the number of integers $1 \leq n \leq x$ that are coprime to q satisfies

$$\frac{\varphi(q)x}{q} + O(\tau(q)),$$

where $\tau(q)$ is the number of divisors of q .

The proof of this simple fact is via inclusion-exclusion: Given a collection of sets S_1, \dots, S_k , the number of elements in their union is

$$\sum_{j=1}^k |S_j| - \sum_{1 \leq j_1 < j_2 \leq k} |S_{j_1} \cap S_{j_2}| + \sum_{1 \leq j_1 < j_2 < j_3 \leq k} |S_{j_1} \cap S_{j_2} \cap S_{j_3}| - \dots + (-1)^{k+1} |S_1 \cap \dots \cap S_k|.$$

So, if some number q has the prime factors p_1, \dots, p_k , and if we let S_j be the set of all $n \leq x$ that are divisible by p_j , then the set of $n \leq x$ that have a common prime factor with q is $S_1 \cup \dots \cup S_k$. It follows that the number of integers $n \leq x$ that are coprime to q is

$$x - \sum_{j=1}^k |S_j| + \sum_{1 \leq j_1 < j_2 \leq k} |S_{j_1} \cap S_{j_2}| - \dots + (-1)^k |S_1 \cap \dots \cap S_k|.$$

We need to estimate the sizes of these intersections: The set $S_{j_1} \cap \dots \cap S_{j_t}$ is all those $n \leq x$ that are simultaneously divisible by p_{j_1}, \dots, p_{j_t} ; and so,

$$|S_{j_1} \cap \dots \cap S_{j_t}| = \left\lfloor \frac{x}{p_{j_1} \cdots p_{j_t}} \right\rfloor.$$

Noting then that

$$(-1)^t \sum_{1 \leq j_1 < \dots < j_t \leq k} |S_{j_1} \cap \dots \cap S_{j_t}| = \sum_{\substack{d|p_1 \dots p_k \\ \omega(d)=t}} \mu(d) \lfloor x/d \rfloor,$$

where $\mu(d)$ is the mobius function, we deduce

$$|\{n \leq x : (n, q) = 1\}| = \sum_{d|q} \mu(d) \lfloor x/d \rfloor = x \sum_{d|q} \frac{\mu(d)}{d} + O(\tau(q)).$$

This sum over the divisors d of q is a multiplicative function, and can easily be seen to be $\varphi(q)/q$. One way to see this is to note that this sum is $1/q$ times the convolution of μ with the identity function $\iota : m \rightarrow m$; we have seen before that this convolution is just $\varphi(q)$, and so our sum is indeed $\varphi(q)/q$.

Putting everything together, we deduce that

$$|\{n \leq x : (n, q) = 1\}| = \frac{x\varphi(q)}{q} + O(\tau(q)),$$

as claimed.