ErNEST S. CrooOT III
Unit Fractions
(Under the direction of ANDREW GRANVILLE)

We will give some of the history of the theory of Unit Fractions, and will state
and prove the following three results, which answer previously unsolved problems of
Paul Erdos and R. L. Graham:

1. For N sufficiently large, every integer m with

1 9 log log N)?
1<m< L;N;— <§+0(1)> ( gloggN ) ]

can be written as m = >, . . €,/n, where ¢, =0 or 1.

2. For any rational r > 0 and all N > 1, there exist integers z, zo, ..., ), where
log log N
N<roi<ao< <o < (e’"—I—OT <%>)N
log N
such that
1 1 1
r=—+—4- -4 —
1 T2 T

3. There exists a constant b > 0 such that if we r-color the integers in [2,b7],

then there exists a monochromatic set S such that Y _.1/n = 1.
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CHAPTER 1

INTRODUCTION

While on a trip to Egypt, in 1858 the Scottish Egyptologist Alexander Henry Rhind
purchased several ancient FEgyptian artifacts at a market in Luxor, including a
papyrus roll, which we now call the Rhind Mathematical Papyrus (see [26]). The
writing on the papyrus was in a hieratic script, a cursive form of hieroglyphics, and

began with the following message:!

Correct method of reckoning, for grasping the meaning of things and

knowing everything that is, obscurities and all secrets.

Below this was written the date, which revealed that the papyrus was written around
1650 B.C., and the name Ahmose, who claimed to be the scribe that had copied its
text from a much earlier work. ?

The next section of the papyrus had instructions for how to manipulate unit
fractions, which are numbers of the form 1/n, where n is a positive integer, and
contained many puzzles of a practical nature illustrating their use. Among these
instructions was a lookup table for how to express numbers of the form 2/n, where

3 <n <101 and n is odd, as a sum of at most four distinct unit fractions. ® This

!The papyrus was divided into two parts: the Recto, and the Verso. The introductory
matter was written on the Recto, which, along with the the Verso, contained several
mathematical problems.

2Ahmose claims this earlier work comes from the time of King Ny-maat-re, who ruled
duing the second half of the 19th century B.C.

3Curiously, the Egyptians did not always bother with decomposing 2/3 as a sum of
unit fractions, and they even had a special symbol to denote it.
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table, in turn, was used to represent rational numbers as a sum of unit fractions,
which was a fundamental operation in Egyptian arithmetic.

An example of how the Egyptians used unit fractions for practical calculations
(more precisely, how they used unit fractions to represent the answer to a practical
problem), as well as the table for expanding 2/n, is illustrated by problem number

65 of the Papyrus, which is as follows (very loosely translated):

100 loaves of bread are to be divided among ten men, three of whom are
a sailor, a foreman, and a watchman, and who get double the share of
the other seven. How many loaves do the seven get, and how many do

the three get?

The number of portions of bread is 13 = 10 single portions + 3 extra portions, and
so the seven men would each get 100/13 = 7+ 9/13 loaves. The ancient Egyptians
would not be satisfied with the remainder expressed as 9/13; they would try to
further decompose this into a sum of unit fractions, and had many ways of doing
so. A common method used was as follows: To expand A/B < 1 as a sum of unit
fractions, where gcd(A, B) = 1, first, find a set of integers 1 < a1 < ay < -+ < ay,

where

Then, we have

for some 0 < by < -+ < by < ay, so that

A 1 L
EZZQ% +ZB25J'
71=1 71=1

o
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A variation on this method, which was also used by the Egyptians, was to find

0<di<---<al,and 1 <b) <--- <b <al, where

2 -1 2w 1
SRELO R PO

so that

2 fe= 1 <« 1

(Note that this second expansion for A/B is not necessarily a sum of unit fractions,
because it can contain the terms 2/3. The ancient Egyptians treated 2/3 as though
it were a unit fraction, and so they did not mind having it in expansions.) In the
case of our bread division problem where A/B = 9/13, this second method was used,
and the expansion obtained was 9/13 = 2/3 + 1/39. Thus, the seven men who got
a single portion of bread each received 7 + 2/3 4+ 1/39 loaves, and the other three
men received double this, which is 15+ 1/3 4+ 2/39. The unit fraction expansion for
2/39 was then looked up in the table, and be found to equal 1/26 4+ 1/78. Thus, the
three men each received 15 + 1/3 + 1/26 + 1/78 loaves.

It seems clear that for much larger problems, unit fractions are not a very efficient
way of solving practical problems, at least not in the way that the ancient Egyptians
used them. Despite this, they were used for practical calculations well past the time
of Ahmose, as is evident in the Akhmim Papyrus, which was written in the sixth
century A.D. (see [3]). Today, however, they are mainly a source of mathematical
curiosity, and have given rise to many conjectures, most of which are still unanswered,
as we will see later on.

Even though the Egyptians worked with unit fractions for millennia, Leonardo
Fibonacci is credited (see [12] and [10]) with “proving”, in 1202, the first fundamental

result in the subject: * Every positive rational number < 1 can be written as a sum

4Fibonacci’s actual name was Leonardo Pisano. Although Fibonacci did not have access
to the Rhind Papyrus, unit fractions were known and used during his time; also, he was an
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of distinct unit fractions. The more general case, where the rational is allowed to
be greater than 1, can be proved using his method, together with the fact that
the harmonic series diverges. The main observation Fibonacci made was as follows:
Given a rational number A/B < 1 (which is not already a unit fraction), gcd(A, B) =
1, write it as A/(An + 1), where | <r < (A—1). Now, 1/(n +1) is the largest unit
fraction which leaves a non-negative remainder when subtracted from A/B, and if

we perform this subtraction, we obtain

A 1 B A—r
An +r n—l—l_(An—I—r)(n—l—l)'

The numerator of this difference is less than A, and so if one repeats this process
of subtracting off the largest unit fraction which leaves a non-negative remainder,
one must eventually end up with a remainder which is itself a unit fraction, because
the numerators of the successive remainders decrease in size. All the unit fractions
which were subtracted will be distinct, and their sum equal to A/B.

From Fibonacci’s method, one can show that every positive rational of the form
k/B <1 can be expressed as a sum of at most k£ distinct unit fractions. This leads
one to wonder whether, for instance, if (k + 1)/B can always be written as the sum
of at most k£ distinct unit fractions, when B is sufficiently large. This is clearly not
possible when k& = 1, since 2/B is not a unit fraction for any B odd, and for k& = 2,
we have that 3/p, where p = 6n + 1 is prime, cannot be expressed as a sum of 2 unit
fractions. To see this, suppose that 3/p = 1/xy + 1/x, where z1 < z5. Then, p{ x4,
else 1 /x1+1/x2 < 2/p < 3/p. This gives us that 1/x2 = 3/p—1/21 = (3z1—p)/(pz1)
(note that this is in lowest terms), which implies that 3z; — p = 1 and pz; = xs;
however, this is impossible because 31 —p = —1 (mod 3). The case k = 3 is the
first non-trivial case, and is virtually the same as an old question of Erdos and Straus

(see [15] and [12]), who asked whether 4/B = 1/x1+1/x3+1/z3 has a solution in the

avid scholar of Greek mathematics, through which a lot of Egyptian mathematical ideas
survived.
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positive integers for every B > 2, where here we do not care whether zy, z,, and z3
are distinct. This question remains a major unsolved problem in the subject, though
there is some computational and theoretical evidence to support it. For example,
the conjecture has been verified for all B < 10" by A. Swett,” and holds for every
B > 2, except possibly when B = 1,11?,13%17%,19% or 23* (mod 840) (see [23]
and [15]). Schinzel and Sierpiriski (see [29]) made the more general conjecture that
A/B =1/x1+1/x2+1/ 23 is always solvable for B > By(A). In [30], Vaughan proved
that the number of rationals A/B which do not have such a solution (zy,z,23),
where A is fixed and B ranges over the integers < N, is < N exp(—c(log N)*/3),
where ¢ is a constant depending only on A. Viola, Shen, and Elsholtz (see [31],
[28], [11]) have generalized Vaughan’s result, with Elsholtz’s work being the most
recent. He considers solutions to A/B = 1/x; + -+ + 1/x, and shows that for
a fixed A, the number of exceptional B < N is < N/exp(car(log N)*®), where
k>3, h(k)=1-1/(2""1 —1), and c4, is a positive constant depending only on A
and k. In the case & = 2 Hofmeister and Stoll (see [17]) showed that the number of
exceptional B < N is < N(log N)~/#4),

In a paper by myself, Dobbs, Hetzel, Friedlander, and Pappalardi (see [6]) we
consider the question of estimating the number of integers m coprime to n, such
that m/n = 1/x; +---+1/xx. We conjecture that this number is n°™"), but we were
only able to show that it is < n®**¢, for every ¢ > 0, where a4, is recursively defined
by as =0 and ap =1 — (1 — ag-1)/(2 + ag_1). For the case k = 2 we show that, on
average, the number of such m is < log® n.

If one modifies Fibonacci’s method a bit, so that for A/B = 1 we start with the

fraction 1/2, and then successively add to this the next smallest unit fraction which

>Elsholtz personally communicated this result to me.



gives the closest underapproximation to 1, then one arrives at the expansion:®

1
122 , where u; = 1, uj+1:uf—uj—l—lzulm---uj—l—l.

J. J. Sylvester investigated this series,” and noticed that one can produce, for any

k > 3, the related, finite expansion:

k-1

— 1 1
+ .
=1 Ujt1 U — 1

1=

(Note: if k& = 2, this would give the expansion 1 = 1/2 4+ 1/2, which we do not
consider, since it consists of a repeated unit fraction.) One can see from the relation
Ujpr = uf —uj + 1 that the sequence of u;’s grows quite fast (double exponentially),
and so one might suspect that if 1 were written as the sum of k distinct unit fractions,
then the largest denominator is always < u, — 1. O. D. Kellogg (see [18]) claimed
to have a proof that this is the case, though he did not publish it in its entirety, but
in [7], D. R. Curtiss supplied the first complete proof.
Let R(k) denote the number of representations 1 = 1/zy 4+ -+ -+ 1/zp, 21 < 22 <
- < xp. Curtiss’s result implies a large, but finite, upper bound for the size of
R(k), and one might wonder exactly how large it can be. Erddés and Straus (see
[12]) proved that
0 < R(k) < a2k+1,

where ¢ = lim,, 00 u}z/Zn = 1.264085.... In 1972, David Singmaster calculated the

first 6 values for R(k) (see [15]), which suggest that the Erdds-Straus upper bound
for R(k) is closer to the truth than is the lower bound: R(1) = 1, R(2) = 1,
R(3) = 10, R(4) = 215, R(5) = 12231, and R(6) = 2025462. Erdds asked for an

6Here, we do not stop when the remainder is a unit fraction, as in Fibonacci’s method.
So, if the first few unit fractions which are subtracted from the successive remainders are
1/uy, 1/ugy ooy 1/ug, and if 1 = 1/uy — 1/ug — --- — 1/up = 1/n, for some n, then we set
U1 = n+ 1.

"He also rediscovered Fibonacci’s work, though one could argue that Fibonacci’s
“proof” does not meet the standards accepted by mathematicians today.
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asymptotic estimate for R(k), which remains an unsolved question. Define R*(k) to
be the number of solutions to 1 =1/ +--- 4+ 1/x,, for some n < k, where here the
z;’s are allowed to be equal. One can easily show the R*(k) > ek* by applying
the following result, which is due to Vose (see [32]): Given any rational number
A/B > 0, there exists an expansion A/B = 1/xy + -+ -+ 1/z,, with ; < -+ < z,
and n < ¢y/log B, for some ¢ > 0. To see how this gives the lower bound for R*(k),
we use it to form unit fraction expansions of each of the numbers (B — 1)/ B where

2 < B < /9’ and for each such expansion, we will have
1 B-1 1 &1
1:§+T:§—|—2x—j, where n < ¢y/log B < k.
]:

Since each expansion corresponds to at most k different values of B, we have that
R*(k) > e(k/c)2/k = W, Perhaps this simple proof can be modified to show
R(k) > ™.

On the opposite extreme from the result of Curtiss, Erdés asked how small the
largest denominator can possibly be if 1 is expressed as a sum of k& distinct unit
fractions. One can show that this largest denominator is no smaller than e(k +
o(1))/(e — 1) from the following simple argument: If 1 = 1/zq 4+ -+ + 1/xy, and xy
is the largest of the z;’s, say z; = ak with a > 1, then

k—1 ok
1 1 dt
1:5—2 Z/ _:10g<a>7
— T ; — T — ) (a—1)k ¢ a—1

j=1 j=0 *

so that @ > e/(e — 1) 4+ o(1) and thus zx > e(k + o(1))/(e — 1). In [20] Greg
Martin solved this question of Erdos by showing that one can express 1 as a sum of
k distinct unit fractions, whose denominators are no bigger than e(k+o(1))/(e—1).
In fact, he proved considerably more, and showed an analogous result for unit fraction
expansions for any positive rational number (not just 1).

In [12] and [15], Erdés and Graham asked similar questions about the smallest

denominator when 1 is written as a sum of distinct unit fractions. For example, they



8

asked whether it is always possible to have a representation 1 = 1/x; + -+ + 1/zy,
1 < 19 < -+ < xp, where 1 ~ k/(e — 1) (note: the question is incorrectly stated
n [12], but is correct in [15]). Another, related question posed in the same work, is
whether it is possible to have xp — 21 ~ k. Both of these questions are answered in
the affirmative for infinitely many values of k£ in Chapter 5, where we show the more

general result: If r > 0 is a rational number, and N > 1, then there exist integers

X1, ..., L, for some k, with
log log N
N<:L'1<:r:2<---<:tk§(eT—I—Or(%))N
log N
such that
1 1 1
r=—+—-+-+ —.
1 T2 T

(note that the big-Oh error term does not depend on k directly, but does implicitly,
because k ~ (¢ — 1)N.) This result has been accepted by Acta Arithmetica, but
has not yet appeared. In the next chapter we give a simple argument which shows
that this implies ; — 21 ~ k and z; ~ k/(e — 1).

One consequence of this result is that there are ~ log NV different representations
of 1 as a sum of distinct unit fractions with denominators < N (essentially one
representation per interval of the form [e’, e/*!]), where no unit fraction can occur
in more than one representation. A further consequence is that all of the integers
< (I —o(1))log N can be written as a sum of unit fractions < N. We note that
this result is close to best possible, since the largest integer we can so represent is
< Yicnen 1/n =1log N + O(1). Along these lines, Erdés and Graham (see [12])
asked for an estimate of the smallest positive integer not in Sy, which is defined to
be the set of all integers n expressible as n = 1/x; + -+ 4+ 1 /x4, for some k, where
1 <zy<--- <z < N. Let sy be the largest integer such that if 1 < n < sy, then

n € Sy; or, alternatively, sy is the largest integer so that sy + 1 is not in Sy. In



Chapter 4 we answer this question of Erdds and Graham, by proving that

1 9(loglog N)*(1+ o(1))
Z n o 2 log N ]

n
1<n<N

< sy <

1 1(loglog N)*(1 + o(1))
[ Z no 2 log N ’

1<nen
which is much stronger than the bounds (1 — o(1))log N < sy < log N + O(1)
that follow from the results in Chapter 5 (though this is a much more general the-
orem). This result is taken from a paper which has been accepted for publication in
Mathematika.

A common method for generating new conjectures in mathematics is to restrict
or change the set of allowable values of parameters under consideration, and in the
case of unit fractions, this has lead to many interesting, unsettled questions. For
instance, Stein, Graham and Selfridge (see [12] and [15], p. 160) conjectured that

the following modified Fibonacci algorithm always terminates:

Suppose we are given a positive rational A/B, where B is odd. Find
the largest unit fraction of the form 1/(2n + 1) which when subtracted
from A/B, leaves a non-negative remainder. Continue subtracting the
largest such odd unit fraction from the successive remainders, until the

remainder is itself a unit fraction.

This conjecture is still unsolved, though it is known (see [13]) that every rational
number with an odd denominator can be written as a sum of distinct odd unit
fractions.

One can put this type of question into the following, more general context: Given
a polynomial f(z1,...,2;) € Z[xy, 22, ..., 2], what can be said about the rational
numbers expressible as a finite sum of distinct, positive unit fractions, where the

denominators are values attained by the the polynomial f for (zi,...,z) € Z*?
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There can be no general procedure for deciding whether any particular rational is
expressible in this way, which works for every possible f, since this is equivalent
to Hilbert’s Tenth Problem, which was shown to be unsolvable by Y. Matiyasevich
(see [21]). To see this, suppose m/n > 0 is a given rational number, and write it as
m/n=1/n;+ -+ 1/n;, where say 0 < n; < --+ < n; are generated by Fibonacci’s

algorithm. Let g(z1,...,2x) be any generic polynomial and set

fler, o wipe) = (Cglan, ooy 20)® + DA(Tpgr, ooy i),

where
h(yla' 7y7f —1+Z ij

and C' is any integer satisfying

2 1
- Z AR 0.
" (yl,...,yt)ezt (yl, ceey yt)

(Note: the number of integer values < z attained by A is at most the number of
integer lattice points (y,...,y;) inside the box |y;| < z'/® j = 1,...,¢, which is
< 2'y/z. Thus, sum of reciprocals of values attained by h converges.) We claim that
m/n can be written as a sum of reciprocals of distinct values attained by f if and
only if there is a solution vector (ay, ..., a;) € Z* to g(ai, ..., ax) = 0, and deciding if
such an (ay, ..., ax) exists, for any given g, is Hilbert’s Tenth Problem. Let F', GG, and
H be the set of distinct values attained by f, Cg(zy,...,xr)* + 1, and h, respectively.
Then, F' = GH, the set of all products ab, where a € G and b € H. If g is never 0

we will have

5 < (o

1
) ( Z h(yl,---7yt)

YLye-erYt ) ELE
1 < m
h(y1y ...y yt) n

JEF aeG beH

Ql

(y17 YL)ELE
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If g(ay,...,ax) = 0, for some (ay, ...,ax) € Z*, then we have the solution

=Y 1 + : +
n  “~mn;  flai,...,ax,1,0,0,0,...,0) = f(ay,...,ax0,1,0,0,...,0)
1

o flay, ... ax,0,0,...,0,1)

Even though the case of a general polynomial f is unsolvable, it still may be
possible to classify all the rationals corresponding to polynomials of sufficiently low
degree, or with a small number of variables. In the case where f(z) is a degree 1 poly-
nomial®, so that f(z) = ax +b, R. Graham (see [13]) showed that the corresponding

rationals are all those of the form m/n, where

ged ( " a ) =1.
ged(n, ged(a, b))’ ged(a,b)
In [14], Graham answered the question when f(z) = z¥, for all & > 2 (note: the
case k = 1 is Fibonacci’s result.), and showed that the corresponding rationals lie
in certain half-open intervals. Just to take the simplest case, f(z) = 22, he showed
that these rationals are all those contained in the two intervals [0,72/6 — 1) and
[1,72/6).

One can ask such questions for unit fractions with denominators in other “nat-
ural” subsets of the positive integers, such as integers with a restricted number of
prime divisors, or subsets with positive lower density. ® Indeed, Erd8s and Graham
showed (see [12]) that any positive rational A/B, where B is square-free, can be
written as a sum of unit fractions 1/n, where each n is the product of exactly three
distinct primes, and they asked whether an analogous result holds for n’s which
are the product of only two distinct primes, which is still an unsettled question.

In regard to subsets of the integers with positive lower density, they made many

8We note that all degree 1 polynomials in k variables take on the same integer values
of some other degree 1 polynomial in 1 variable.

9A sequence a; < ay < -+ < ay is said to have positive lower density if #{a; < 2}/ is
bounded from below by some positive number for all sufficiently large =
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conjectures, some of which are still unsolved. We list a few of these and related
conjectures which appeared in [12].

1. Is it true that any sequence z; < x5 < --- < --- of positive density contains a
finite subset whose sum of reciprocals equals 17

This is still unsolved, although the methods in Chapter 6 could possibly be
modified to answer it.

2. Let A(n) denote any largest subset of {1,2,...,n} containing no subset whose
sum of reciprocals equals 1. Is |A(n)| = n — o(n)?

3. Suppose one partitions the integers > 2 into r classes. '© Does there always
exist a finite set .S’ belonging entirely to one of the classes, such that >° _o1/n =17
(note: this question also appears in [22])

In Chapter 6 we prove a general result, which shows for question 2 that |A(n)| <
cn, for some constant ¢ < 1 so that the answer in question 2 is “no”, and which
answers question 3 in the affirmative. Moreover, for question 3, we show that there
exists such a set S, which is a subset of [2, 670007 +2(")]  We claim that the 167000
cannot be improved to a number less than 1, though it may be possible to improve it
to 1 exactly. To see this, let By, ..., B, denote consecutive blocks of integers, starting
with 2, where the sum of reciprocals of integers in each block is just under 1 (so,
By ={2,3}, since 1/2+1/3 <1 and 1/24+1/3+1/4 > 1), and let = be the largest
integer in B,, so that By U---U B, = [2,z] N Z. Now, = > €' ~°(") since

—~1 1 1
;E_;néjg>; (1—;) =r —logr — O(1).

Thus, By, ..., B, form a partition of the integers in [2, ¢"~°(")], where no class contains

a subset S with 3 _.1/n = 1.

10This can be rephrased in the language of colorings as follows: Suppose one r-colors
the integers > 2



CHAPTER 2

REVIEW OF LITERATURE

We give here a review of the literature which pertains directly to the results in
Chapters 4, 5, and 6.

As in the Introduction, define Sy to be the collection of all integers n which can be
written as n = 1/x; 4+ - -4 1/xg, for some k, and where | < 27 < 29 < -+ < 2, < N.
Define sy to be the largest integer so that if 1 < n < sy, then n € Sy. Erdos asked
for an estimate for |Sx| in [12], and noted that |Sy| < log N +O(1), trivially. In [33],
H. Yokota proved that |Sy| > (1/240(1))log N. He improved this to an asymptotic
estimate, |Sy| = log N 4+ O(loglog N) in [35], and in his most recent paper (see [36]),
he shows that if my denotes the largest integer in Sy, then there exist two positive

constants, ¢; and ¢y, such that

log N +~—2 <mpy <logN 4+~ — ©

8]
" loglog N loglog N°

This result contradicts the results in Chapter 4, where we obtain

2 log N

S 1 9(loglog N)*(1 + 0(1))]

n
1<n<N

1 1(loglog N)*(1 + o(1))
§5N§[Z——§ o :

n
1<n<N

and the reason for this is that Yokota’s result is incorrect. !

Yokota’s upper bound for my is incorrect, and a correction recently appeared in the
July 2000 issue of .J. Number Theory. His upper bound is now the same as for sy listed
above.

13
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In another paper (see [34]), Yokota proves that for infinitely many k, there exists

an integer sequence 0 < zy < -+ < zp, with 1 = 1/xy + -+ + 1/x, where
zy < k(loglog k)?.

In [19], Greg Martin improves upon this, using methods similar to those in Chapter
4, by showing that any rational number r can be written as r = 1/zq 4+ -+ 4+ 1 /x4,
where z1 < 23 < --- < 2 and 2 = O,(k). In [20], he improves this further by

showing that such a representation exists, for all sufficiently large k, with

_ k kloglog 3k
k= +O’“< Tog 3% >

Furthermore, the error term is best-possible, up to a constant factor. Martin’s
representation for r has the property that the number of z;’s in [xy/€e", xi] is ~ k,

which suggests that perhaps there is representation with

TE k
e’ er —1°

which were questions posed by Erdds and Graham in [12] (their questions were
with » = 1). This is indeed the case, and is a consequence of our main result
in Chapter 5, where we prove the following: There exist integers zi,..., zy with

r=1/x1 4+ -+ 1/zy, for some k, where

loglog N
N<oi<og< <o < (e + O, <%>>N,
log N

for all N > 1; moreover, the error term is best-possible. To see that this answers
the questions of Erdés and Graham, let I = [N, (e + O, (loglog N/log N)N], where
the big-Oh error term is the same as above. Then, we have

> - Z——Z = o)} = o),

JEINZ ]EIOZ
JFxTL, T

and so k ~ |I], the length of I, which means z; — x; ~ k as claimed.
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Another question asked by Erdés and Graham in [12] and [22] is whether there
exists a monochromatic solution to 2521 1/z; = 1, for some k and any r-coloring
of the integers > 2. The first and only result on this question, besides those in
Chapter 6, appeared in a paper by T. Brown and V. Rédl in [1]. They proved that
there exists a monochromatic solution to 1/xq = 1/x1 + -+ 4+ 1/x, which was done
by extending a theorem due to Rado on monochromatic solutions of homogeneous
linear equations. In Chapter 6, we solve this question of Erdos and Graham and
show that there is a monochromatic solution with {zy,..., 23} C [2,5+°()], for some
constant b (which we show may be taken to be e'¢7%%). We note that b cannot be
taken to be smaller than e, since for any € > 0 and r sufficiently large, the integers
in [2,e('=97] can be r-colored in such a way that the sum of of reciprocals of the
numbers of each color is just under 1, as was shown in the Introduction.

Let S be any subset of {1,2,..., N} with A(N) = >

nes 1/n maximal such that
there is no subset of S whose sum of reciprocals equals 1. Trivially, A(N) >
loglog N 4+ O(1), because no subset of the primes has sum of reciprocals equal to
I and since 33y 1/p = loglog N + O(1); also, A(N) < 337 1/ =log N + O(1).
In an email to me, Carl Pomerance pointed out the set of all integers n > 1 with
a prime factor > n(1 + o(1))/logn cannot contain a finite subset whose sum of
reciprocals equals 1 (for a suitable o(1)), and so

1 log log
/\(N) > Z Z m—p > Z 808P > (10g 10g N)Q.

p<N/log N m<logp p<N/log N p
p prime - p prime

A consequence of our result in Chapter 6 is that A(N) < clog N, for some constant
¢ < 1, which answers another question of Erdés and Graham mentioned in [12]. It

would be nice to get a good estimate for A(V).



CHAPTER 3

NOTATION, DEFINITIONS, AND STANDARD THEOREMS

In analytic and combinatorial number theory there are a fair number of notations
and methods which are used over and over again, and this chapter is devoted to

listing some of them for future reference.

3.1 ARITHMETICAL FUNCTIONS

Here are a few standard arithmetical functions used in number theory:

w(n) =#{p : pln, pprime} = Y 1,

pln
p prime

Qn) = #{p* : p*|n, p prime},

0, if p?|n, for some prime p;
p(n) =
(=¥ otherwise.

r(n)=#{d : dln} =) "1

d|n
o(n) = Zd
d|n
1
pn)=#{m : 1 <m<n, gedim,n) =1} =n (1——),
(n) = #{ (m,n) =1} H ;
logp, if n=p® pprime
Aln) =
0, otherwise,
¥(z) =Y An) = log (lem{2,3, ..., [2]}),

m(x) =F#{p <z : p prime}.

16
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3.2 BI1G-OH, LITTLE-OH, AND VINOGRADOV NOTATION

Given two functions f(z) and g(z), we say that f(z) = O(g(x)), which is read “f(x)
is big-Oh of g(x)”, or in Vinogadov’s notation, f(z) < g(x) (or, g(z) > f(x)), if
there exists a constant C' so that |f(z)| < C|g(z)|, whenever z > X,. If f and
g happen to depend on several parameters, then we use subscripted notation to
indicate which parameters the implied constant C' depends on; for instance, if we
write f(z) = O,(g(z)), or f(z) <, g(z), where f(z) and g(z) depend on some
invisible parameter a, we mean that there exists some constant C(a), depending
only on a, such that |f(z)| < C(a)|g(z)|, whenever z > Xo(a).

If g(x) = O(f(x)) and f(z) = O(g(z)), then we use the notation f(z) < g(z),
and if lim, o f(2)/g(x) = 1, then we say that f(z) is asymptotic to g(z), and we
denote this by f(z) ~ g(x). We note that if f(z) ~ g(z), then f(z) < g(x), but the
converse is not true.

We say that f(z) = o(g(z)), which is read “f(z) is little-Oh of g(z)” if
limg oo f(2)/g(z) = 0, and we commonly use the notation o(1) to represent
some generic function which tends to 0 as some implicit parameter tends to infinity

(and O(1) represents a function which remains bounded).

3.3 PARTIAL SUMMATION

The method of partial summation is used frequently in analytic number theory, and
is a method for estimating the sum S(z) = >, . a,f(n), if one has an estimate
for T(t) = > <, s @n, for t < z, where a, is some arbitrary sequence and f(z) is

some differentiable function. The way the method works is by the following formula
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An example of how this formula is used is as follows. Suppose we want to estimate

the sum
log p
S(z)= Y .
p<z
p prime

if we know that

t
T = 3 towr =140 et )

p<t
p prime

Then, we have that f(¢) = 1/¢, which is differentiable (when ¢ # 0), and so by the

partial summation formula

) = 1 (-0 ()

+ /19” (t +0 <exp((1ogi)3/5_o(1))>> t% dt

“dt 1

= o T / O(texp<<1ogt>3/5—o<l>>>dt
1

= O(1) + logz + O (/1 I exp((log )70 dt) =logz + O(1).

3.4 MERTENS’S THEOREM

Mertens’s Theorem states that
e

1
11 (1_§> T loga’

p<z

where v = 0.57721566... is Euler’s constant. Another form of this result is as follows:

1 1
Z —zloglog;v—l—A—l—O( ),
P log x

p<z
p prime

A:7+pz {10g<1—}1—?>+%}.

prime

where
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3.5 THE PRIME NUMBER THEOREM

The Prime Number Theorem with good error term (see [27]), states that

m(z) = li(z)+ 0 (exp((logi)3/5‘°“))> 7

where

li(z) = /I di x
RE = , logt logz’

and another frequently used form of it is:

Y(z) = 2+ 0 <exp((logfi)3/5_o(l))> '

We note that these two forms of the Prime Number Theorem are interchangeable

through the use of partial summation.

3.6 EXPONENTIAL SuMSs

An exponential sum is a function f(¢) which can be expressed as

ft) = Z a, €t

n<N

We use the notation e(t) = €™ to make it easier to read, so that

J(t) =" ane(nt).

n<N

The reason exponential sums are so useful is because of the following two formulae:
1 . :
S a = LY e(-ai/DIGD).

and
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Both of these formulae can be proved using the following, more basic results for
integers n:
1, ifn=0

1 it 1, ifn=0 (modd
/ e(nt)dt = and lz e(yn/b) = ( )
0 0, ifn+o0, b= 0, ifnz0 (modd).



CHAPTER 4

ON SOME QUESTIONS OF ERDOS AND GRAHAM ABOUT EGYPTIAN FRACTIONS

4.1 INTRODUCTION

Define Sy to be the set of all positive integers m which can be expressed as

where k is variable and the x;’s are integers with 1 < 7y <z < -+ < zp < N. In

[12] and [15], Erdés and Graham asked the following questions.

1. What is the smallest natural number not in Sy?

2. How many numbers are in Sy?

Recently, in [35], Yokota showed that {n : 1 <n <logN —5loglog N} C Sk,
thus giving the correct asymptotic to the first two of these questions. In this chapter

we prove the following results.

Main Theorem Define sy to be the largest integer such that, whenever 1 < n < sy,

n € Z, there exist integers 1 < xy < x9 < --- <z < N, for some k, such that
1 1 1
n=—+—+--+—

KA T2 Tk

Then

v Lo 2<1oglogzv>2<1+o<1>>]

Gy n 2 log N

1 1(loglog N)*(1 + o(1))
<ovs| © -ty

n
1<n<N

21
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Corollary 4.1 Let v = limyoe {Zl<n<N 1/n —log N} be Fuler’s constant.

For a given positive integer n there are integers

9 log?
1§x1<x2<---<xk§e”—”{1+<§+o(1)> o8 "}
n

for some k, such that

1 1 1
n=—+—+..+—.

TL Ty Ty

To answer these questions of Erdos and Graham above, let ZlgngN I/n=m+4,
where m = m(N) is the integer part of ElgngN 1/n, and § = §(N) is the fractional
part.

We have trivially that Sy C {1,2,....,m} and our main theorem tells us
that when N is sufficiently large, {1,2,....m — 1} C Sy. Moreover, if § >
(2 + o(1))(loglog N)?/log N then m € Sy so that Sy = {1,2,...,m}, and if
§ < (34 o(1))(loglog N)?/log N then m ¢ Sy so that Sy = {1,2,...,m — 1}. Let
Dy = (3 + o(1))(loglog N)?/log N. We believe that the upper bound in the Main

Theorem is the truth, which if true would say that for N sufficiently large,

{1,2,...,m}, if 6 > Dy
Sy =
{1,2,....m—1}, il § < Dy.
To prove the Main Theorem we will need to introduce some notation. For any

given prime power p* and any integer N > 1, define S(p®, N) to be the set of integers

< N whose prime power divisors are < p®. Define

1 1 1 1 1
p*,N) := max minq—+--+ + — : —4+ —+4---4+—=1[ (mod p),
FP",N) = max { Y1 Ye U1 Y Yk (mod p)

1§y1<---<yk§Neachy¢€5(p“,N)}

(let f = oo if such a ‘maximum’ does not exist, which will happen if there does not

exist an k-tuple (y1,...,yx) for some ! (mod p)). For ¢ > 0 let

¢ N/p* 1
F(N,c) = Z M+Z{m—},a : N/log® N < p* <N, mpagN}.

p<N/logeN P
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The idea of the proof of the Main Theorem is as follows: we start with the
full sum ZlgngN 1/n and then try to remove as few terms as we can so that the
sum of the remaining terms is an integer. We want the contribution of those terms
we remove to be as small as possible and Proposition 4.1 below tells us that this

contribution need be no bigger than F(N,¢), for any ¢ > 0.

Proposition 4.1 For any given inleger N there exists a subsel T of the inlegers

< N such that Sy = So(N) = > ,cp 1/t is an inleger satisfying

1
0 E —
< - So(N) < F(N,e),
n<N
for all ¢ > 0.

To see why Proposition 4.1 is true, we first remove all of those terms in the full
sum where n has a prime power factor bigger than N/log® N, which accounts for the
second summand in the definition of F(N,¢) above. Call the sum of the remaining
terms S = u/v, where ged(u,v) = 1. We observe that if p*|v then p* < N/log® N.
Let ¢* < N/log® N be the largest prime power dividing v. We try to find numbers
1<y <ya < <yp < N/g°, where:

1. gty fori=1,2,... k.

2. All of the prime power factors of the y;’s are < ¢”; and

3. @S-+ —-L ... L=0 (modygq).

Y1 Y2 Yk

(Notice that ¢*S = q®u/v makes sense modulo ¢ because ¢°||v.) From the definition
of the function f we have that if f(¢*, N/q°) # o then there are such integers y;;

moreover, there is a choice with

11 1
—+ —+ -+ — < f(¢", N/q).
Yy Y2 Yk

Let us just assume for the moment that f(¢*, N/q®) # oc and let 1 < y; < y, <

-+ < yx < N/q¢" be any choice satisfying

1 1
P < f(¢",N/q").

hn
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We make the following three deductions.

1. Each of the numbers
1 1 1

¢y’ Py’ Py

are terms in the sum S.

2. If we remove these terms from S and call the new sum 5’ so that

1 1 1
u—/:S/:S—b—__b—a ng(ul7vl):17
v Yy T Yk

then the largest prime power dividing v’ is strictly smaller than ¢°.

3. This new sum S’ satisfies S — S’ < f(¢*, N/¢")/q".

Now let r* be the largest prime power dividing v’. We subtract terms from sum
S" =" [v") ged(u”,v") = 1, where the largest prime power dividing v is strictly
smaller than r* < ¢°. This new sum S” satisfies

f(q",N/q") N f(r*, NJr*)

S—8"=(S—8)+(8-8"< : .
q

T.S
If we continue subtracting terms in this manner we eventually get down to a sum

So where

?

DY (", N/p")

pl’l
2<p?<N/log" N

and Sy is an integer. Proposition 4.1 now follows since
Y 1/n =Sy < F(N,e).
1<n<N
We will obtain explicit bounds on F(N, ¢) by proving the following inequality for
f*, N/p"):
(p—1)p*/lem{2,3,4,...,p"}, if p* < tlog N
F", N/p") < ¢ 20/(p* — 1), if Llog N < p* < VN
4/1og® N, if VN < p* < N/(log*** p?).
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To prove the first case, when p* < ilog N, we will show that

{lcm{Q,B,...,p} Cl<u< (p—l)} C S, N),
phu

and moreover that this set has a member in each residue class Z 0 (mod p). Our
bound f(p*, N/p*) < (p — 1)p*/lem{2,3,...,p"} then follows. Using the following
identity we will have that the contribution of such small prime powers to F(N,c) is

< 1.

Lemma 4.1 For g prime and positive integer b,

p—1 b ) lem{2,3,...,¢°} — 1
 2<p*<q’,; = .
Z {1cm{2,3, ey P} =P=a.p prlme} lem{2,3,...,¢"}

The bound on f(p®, N/p*) where log N/4 < p* < /N comes directly from the

following lemma:

Lemma 4.2 [fp # 2 then f(p*,p*) <20/(p* — 1) for p* > 3.

From this lemma we will show that the contribution of prime powers p* with
log N/4 < p* < VN to F(N,¢)is O(1/log N).
Finally, the bound on f(p®, N/p*) where N < p* < N/log®™* N follows from

the following Proposition and its corollary.

Proposition 4.2 Suppose ¢ > 0 is given. There exists a number N, such that

342¢

whenever n > N, and k > log n, for any set of k distinct primes 2 < p; < py <

oo < pr < log®™* n which do not divide n, and any residue class | (mod n), there
is a subset
{a1. 2, st} S {p1,p2, s pit
such that
i+i+~+izlﬁmmn
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Corollary 4.2 Let § > 0 be given. There exisls a constant Ms so that, when

Ms < p* < N/log®** N,
4
p*yN) < ——F—.
f(p ) 10g5/3 pa
We will show that the contribution of such prime powers to F(N,3 + €) is
O(1/log N), and that the contribution of the prime powers p* with N/log®t* N <

p* < N to F(N,3+¢)is (3 +0(1))(loglog N)?/log N, and so we arrive at

Proposition 4.3 For all ¢ > 0 we have

(3 + ¢€)? (loglog N)?
2 + 0(1)> logN

F(N,3—|—6)<1—|-<

With Propositions 4.1 and 4.3, and the fact that every integer can be written as
a sum of unit fractions (see [35]), we prove the bound
1 9 (loglog N)?
> —— | = 1) | ———=———
SN_[Z n <2+0( )> log N ’
1<n<N
as claimed in the Main Theorem. To get the bound
1 1 (loglog N)?
< —— = 1) | ————
SN_[Z n <2+0( )> log N
1<n<N

we show that if 1 <z < xz9<--- <2 <N and

is an integer, then none of the x;’s can be divisible by a prime p with N loglog N/log N <
p < N. From this and a technical lemma it follows that

11 1 1 1 (loglog N)?
- => _ - )=t/
Z n o Tp Z mp ” (2 +o )> log N

Nloglog N/log N<p<N
mp<N
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4.2 PROOFS AND TECHNICAL LEMMAS

Proof of Lemma 4.1. The lemma holds for ¢® = 2, since

P A
lem{2,...,p} 2

2<pe<2

Assume, for proof by mathematical induction, we have shown that the theorem
holds for all prime powers ¢°, where 2 < ¢* < r*, where r* is some prime power. We
observe that lem{n : 2 <n <t} =Ilem{p* : 2 < p* <, p prime}. Using this and

the induction hypothesis we have

>
lem{2,3, ..., p*}

2<pe<re

B Z p—1 n r—1
B lem{2,3,....,p*}  lem{2,3,...,r5}

2<p<r?
lem{2,3,....,r° = 2,r* — 1} — 1 r—1
- lem{2,3,...,rs —2,rs — 1} + lem{2,3,...,r5}
~orelem{2,3, .., =2, =1} —r r—1
B lem{2,3, ...,r5} + lem{2,3,....,r°}
_ 1(:nr1{2,3,...,r5}—17 (4.1)
lem{2,3,...,r5}

and so the theorem follows by mathematical induction.

Proof of Lemma 4.2. Suppose [ is any integer where 1 <[ < (p —1). The number
of pairs (y1,y2) such that 1 <y <y <p* =1, p{y1y2 and

1 1
— 4+ —=1[ (mod 4.2
4=l (mod p) (4:2)

is 2((p—2)p**~? —=1) > 1 for p* > 3. Now, one of these pairs must have y; > p*/10,

since the number of pairs (y1,y2) with y; < p*/10 satisfying (4.2) is less than

~2a—1

p l _ 9y, 2a-2 _
10 < 9 ((p 2)]7 1) 9

whenever p > 2. For this pair, we will have

1 1 2 20
—F =< =< —.
Y1 Y2 yr p°
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Since [ was arbitrary, it follows that

20
fp*,p") < —.
P

Lemma 4.3 Let g(N) be the largest prime power such that lem{2,3,4,...,9(N)} <

N. When g(N) > 2 we have that g(N) > Llog N.

Proof of Lemma 4.3. Let h(N) be the next prime power after g(/N). Since 7(N) <

2N/log N when N > 2 (see [27]) we have when A(N) > 2 that
N <lem{2,3,..., h(N)} < h(N)™FND) < p( NN}/ ogh(N) — o2h(N),

By Bertrand’s postulate that for n > 2 there is always a prime p with n < p < 2n
we must have log N < 2h(N) < 4g(N) when A(N) > 2 and so g(N) > ;log N when
g(N) > 2.

Lemma 4.4

Z L_f(loglogN)Q_l_O log log N
2 logN loeN )~

mp
N/log® N<p<N
mp%>N

Notice that since

1 1 1 loglog N log® N
< — — = 1< :
2 2w 2w <Weew 2SR

a>2 a>2 <
N/log¢ N<p?<N N/log® N<p@<N a>2
mpa <N mpa <N
Lemma 4.4 is also true if we replace the sum over primes by a sum over prime powers

between N/log® N and N.

Proof of Lemma 4.4. Using the estimate > _1/p =loglog N + B + o(1/log N)

(see [27]), we have for any N/log® N <t < N that

5 1 ottt o) i () 1
o B logt) ~ ®\logt—1 log ¢

t/e<p<t
1+ o(1) 1+ o(1)
logt  logN °
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Then,

1 1 log (N/p) + O(1
3 — = O L 3 g(/zf)+()

N/log® N<p<N N/log® N<p<N ~ m<N/p N/log® N<p<N P

_ Z Z J+0(1)

1<j<[cloglog N]  N/el<p<N/ei—1 P

= |

L0 Z cloglog N

N/log® N<p<eN/log® N p

'+ O(1 log log N
_ 3 J+00) . (loglog
, log N log N
1<j<[cloglog N]

é (loglog N)? log log N
2 logN log N

4.3 PROOF OF PROPOSITION 4.1

Let 2=¢; <3 =g <4 =gqg3 < ... be the sequence of prime powers. Let
u 1 1 . a .
- = Z ——Z —:n< N, n=mp", p*> N/log"N ;.
v n n
2<n<N
Choose r so that g, is the largest prime power dividing u/v (notice that ¢, <
N/log® N) and let u,/v, = u/v. Define T, := {n < N :p*n = p* < N/log® N}
so that w,/v, = Y7, ., 1/t. We shall recursively define u;/v; and Tj, for j =
r—1,r—2,...,0 where u;/v; = EteTJ 1/t, T; € Tj41, and so that
(i) {n <N @ p'ln=p" <q;} CTj, and
(i) p*[v; = p" < g5,
where we take go = 1. Then we take 7' = Tj in the Proposition since (ii) implies
vo = 1 so that ug/vg is an integer.
If g; does not divide v;, let T;_; = T; and u;_1/v;—1 = u;/v;; otherwise, assume

q; divides v; and suppose ¢; is some power of the prime p. Let [ = g;u;/v; (mod p)
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and select, if we can, integers 1 < y; < y2 < -+ < yp < N/q;, each belonging to
S(qi, N/q;), so that

1 1 1
—+ —+--+4+—=1 (mod p).
Y Y2 Yk

Then let S; := {q;y1,49y2, ..., qjyx }. Note that, by (i), S; C T};. Define T;_; := T;\ S;.
Thus

o

v;
U e, s€S;

We see immediately that (i) above is satisfied. Now

: 1 U 1 1
0 ﬁ_z_ :CIJU]_<__|_..._|__>E() (mod p).

Vi es, ® Uj i Yk
Since ¢j { vj_; we have that (ii) is satisfied. Finally note that, by definition

3 1 < f4i, N/q;)

4q;

)
sES;

and so the Proposition follows.

4.4 PROOF OF PROPOSITION 4.2 AND ITS COROLLARY

Proof of Proposition 4.2. Suppose that b is coprime to n, and let r,(a/b) denote

the least residue of ab™! (mod n) in absolute value. The number of subsets of

{p1, ..., pr} whose sum of reciprocals is =1 (mod n) is then given by
n—1
1 hi (h
R ()
h=0 7=1

where e(z) is defined to be €27 Define

We will show that

|P(h)] < P (4.3)
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when h # 0 and when n is sufficiently large. It will then follow that

n—1
1 2k 2k
>—q2F -y 4 =50

h=1

151 =

and thus there is at least one subset of {py, ..., pr} with the desired property.

To prove (4.3) we note that

[T (400 {o (2t o (i)

J=1

e (=702) ()

[P(R)| =

= 2F

We may write

ro(h/p;) =

?

sin+h
P
where 0 < h < (n — 1) and s; is an integer satisfying —[3p;] < s; < [ip;]. Define
L(N) := log’™* N 4 1. We will now show that when n is sufficiently large at
least 1k of the s;’s have the property that |s;| > L(n). Since, if we suppose there
are infinitely many n where at least 1k of the s;’s satisfy |s;| < L(n) then, by the

pigeonhole principle, there is a number m with |m| < L(n) such that s; = m for at

least
k/2 . log®t* n,
2L(n)+1 7 4log***n+6

of the primes p; dividing mn + h when n is sufficiently large. However, this is

> logn

impossible for large n since |mn + h| < n(L(r)+ 1) < n* has o(log n) distinct prime
factors. Thus when n is sufficiently large at least 1k of the s;’s satisfy |s;| > L(n).

It follows that, when n is sufficiently large, at least %k of the p;’s satisfy
(sj = 1)n

sin+h
P P

rn(h/pi)| =

E

J

We have for such primes p; that, when n is sufficiently large,

() < s () o (45)

m? 1
< l-——4+0(—7F1,
2log*t* n <log4+46 n)
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342¢

and so, from (4.4), since k > log”™"“n we have that

k 7T2 1 k/2 k 7'r2logn Qk
PR <21l - ——+—+0 | ——— L 2Wem T = — 1,
|P(R)] ( 210g2+26 n <10g4+4E n)) ¢ © ( n )

which was just what we needed to show in order to prove our Proposition.

Proof of Corollary. Let N5/3 be as in Proposition 4.2, and let Ng be the smallest
number so that when N > Né there are at least 10g3+§5N + 1 primes ¢ with
%logSHN < g < log®** N where ¢ # p. Suppose [ is any number where 0 <

[ <(p—1)and p” is any prime power where
N/log*™* N > p* > M; := maX{Ng/g,Né}.
By Proposition 4.2 there are primes ¢y, gq, ..., g; with
%logSHN <pr<@p< --<q¢< 10g3+5N

and t < logS+§5N + 1 such that

1 1 1
—+—+4+---+—=1[ (mod p)
@ G2 q
Also
1 1 ! 2(log>* ¥ N + 1) 4
— b —< < < .
¢ qt % log>*¥* N — log®*+® N log5/3 N

Since this bound holds for all / with 0 <[ < (p — 1) the Corollary follows.

4.5 PROOF OF PROPOSITION 4.3

Let g(N) be as in Lemma 4.3. We may then write

F(N,3+¢) = A(N)+ B(N)+ C(N) + D(N) + E(N),
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where
AN = f(p ’,{.V/p )
2<pa<g(N) P
f(p*, N/p*
B(N) = >y Jw N/p") - ),
g(N)<p*<V/'N
J(p*, N/p*
C(N) = Z %7
VN<p®<N/log® N
D(N) = Z M7 and

na
N/log® N<pe<N/log?t¢ N P

1
E(N) = Z{—Q:N/log3+EN<pa§N, mpagN}

mp

From Lemma 4.4 we have that E(N) = (54 0(1))(3 + ¢)*(loglog N)?/log N. We
will show that A(N) < 1 and that B(N), C(N) and D(N) are each O(1/log N) and

so the Proposition will follow.

For each prime power p* define

lem{2,3, ..., p*
Upa -:{ em{2,3, 7p}:lgug(p—l)}.
pru
We have that Uya C S(p®, N/p*), for p* < g(N). Also, for each [ with 1 <[ < (p—1),

there is an element y € Uy« such that 1/y =1 (mod p). Thus for p* < g(N) we

have

e o pp—1)
fp", N/p*) < min(Uye)  lemi{2,3, ..., p"}

From this and Lemma 4.1 it follows that

AN = % f(p*, N/p")

2<pa<g(N) P

Z p—1 _ lem{2,3,...,9(N)} — 1
) lem{2,3, ..., p*} lem{2,3,...,9(N)} ~

IN

2<p<g(

Thus A(N) < 1.
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By Lemma 4.2, if p # 2 and p* < /N then f(p*, N/p*) < f(p®,p*) < 20/p".
Thus by this and Lemma 4.3 we have for g(N) > 2 that

a N a a N a
BNy = % f(p,pa/p)< ) f(p,pa/p)
g(N)<pa<v/'N 1logN<pe<VN

1 20 4 1

_ < 20 —

S iy Aoy ]

20> L1og N Llog N<pr<V/N n>Llog N
p odd

IA

By the Corollary to Proposition 4.2 when N is sufficiently large and p* <

N/log® N we have f(p*, N) < 4/log p*. Then for N sufficiently large we have
f(p*, N/p") 1 1
N) = — <A
C(N) > < > 0 g

a al a =
VN<pe<N/log® N P \/N<pa<N/1og6Np os P

by the Prime Number Theorem.

Again by the Corollary to Proposition 4.2 we have when N is sufficiently large
and p? < N/log®*(N) that f(p*, N) < 4/ log/® p* = O(l/loge/3 N). Thus

D(N) = > S Nfp') o 4 3 L

a /3 a
N/log®(N)<p?<N/log?*<(N) P log P

n/logé N<pe<N/log?t< N
_ 0 loglog N ‘
logl—}-e/SN

4.6 PROOF OF THE MAIN THEOREM

From Propositions 4.1 and 4.3 we have that there is an integer T(N) € Sy with

T(N)> ) l—1—G(N),

n
1<n<N

where
_ 9 (loglog N)*(14o(1))
GN) = 2 log N '
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Thus

gT(MS[Z %]

1<n<N

[Z 6w

1<n<N

Therefore there exists an Ny so that when N > N, we have

OS|T<N+1>—T<N>|s[ ) %]—[Z LG

1<n<N+1 1<n<N

<1

It follows that when N > Nj is sufficiently large so that T'(Ng) < n < T(N), then
n = T(t) for some Ny <t < N. In particular this says that if T(Ng) < n < T(N)

then there exist integers 1 < zy < z9 < -+ <z, < N, for some k, so that

As a consequence of the main result in [35] we have that for N sufficiently large and
1 < n < T(Ny), there exist integers 1 < 21 < g < --- < x, < Ny, for some k, so

that

We conclude that when N > N,

1 9(loglog N)*(1 + o(1
2Tz | 3 L slos ML+ o))
1<n<N g

as claimed.

Suppose now that 1 < zy < xy < --- <z < N has the property that

is an integer. We claim that none of the z;’s has a prime factor greater than
Nloglog N/log N: for suppose p is such a prime and let z;; = pmy, x;, =
pma, ..., x;, = pmy be all the z;’s divisible by p. Since (N loglog N/log N)m; <
pm; < N we have that such m; < log N/loglog N and therefore [ < log N/loglog N.

Also, since
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is an integer, we must have p{ v and yet

y LS S B W log N l—1< log N \'
plmata my Mg m; log log N loglog N

log N o Tog < N loglog N <.

loglog N log N P

We conclude that no x; is divisible by p > lefg#. Using this fact and Lemma 4.4

we get the bound

1 1 1 1 (loglog N)?*(1 1
Z __Z_> Z :_(Ogog )(—I_O())’
1<n<N 1<i<k N_llogl_?\]ﬂ<pSN

OgmpSN

and so

1 1(loglog N)*(1 + o(1))
< -
N = Z 2 log N

as claimed.

4.7 PROOF OF THE COROLLARY TO THE MAIN THEOREM

Fix an € > 0. Let m be a sufficiently large positive integer and select N for which

1 9 (loglog N)?
mes Z _<2+6> log N

n
1<n<N

1 9 (loglog N)?
— log N ) (24 toelos )
o) (30 P

From the Main Theorem we know that for m sufficiently large there exist integers

1<z << <xp <N, for some k, so that
m=—+4--4 —. (4.5)

Since N > e”+0(1), we have that n <log N + v — (% + e+ 0(1))(10g2 n)/n. Thus, as

long as N satisfies

2
N > en—W+(%+E+O(1))(log2 n)fn _ e {1 + (g + e+ 0(1)) log n}
2 Y

n
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equation (4.5) above has a solution with zx < N. Since ¢ > 0 was arbitrary, the

Corollary follows.



CHAPTER 5

UNIT FRACTIONS WITH DENOMINATORS IN SHORT INTERVALS

5.1 INTRODUCTION

Let X denote the set
o
{{wl,...,mk} : ;x—] =1, 0<x; < <:z:k}.
Erdés and Graham (see [12] and [15]) asked the following questions:

1. Is it true that

k
e—1

?

max{;z:l : {5171,---71’k}€Xk} ~

Trivially, we have that it is less than or equal to (1+ o(1))k/(e — 1), so all one needs
to show is a lower bound of size (1 4+ o(1))k/(e — 1).

2. Is it true that
min{:l:k — T {1’1, ---,l’k} € Xk} ~ k?

(Note: these two questions were misstated in [12], but are correct in [15].)

In this chapter we will prove the following theorem, which solves these questions
of Erdés and Graham for infinitely many k.
Main Theorem Suppose that r > 0 is any given rational number. Then, for all

N > 1, there exist integers xq, ..., Tg, with

log log N
N<:1:1<$2<---<:17k§<6T+Or<%>)l\f
log N

38
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such that
1 1 1

r::E—l-l-x—Q—l-"'—l-E.
Moreover, the error term O,(loglog N/log N) is best possible.
We will now discuss the idea of the proof of the Main Theorem. Let ¢ > 1 be
the smallest real number where

1 1
< E — < —.
"= n _T—I_CN
N<n<cN

Using the fact that >, ., 1/n = logt + v+ O(1/t) one can show that ¢ = €" +
O,(1/N). Now suppose
u

1
— = E - h d =1. 1
- ~, where gc (u,v) (5.1)

N<n<cN
If we had that u/v = r, then we would have proved our theorem for this instance

of r and N, because ¢ = €" 4+ O,(1/N) is well within the error of O,(loglog N/log N)
claimed by our theorem. Unfortunately, for large N it will not be the case that
ufv=r.

To prove the theorem, we first will use a proposition which says that we can

remove terms from the sum in (5.1), call them 1/ny,1/ng, ..., 1/ng, so that if
v u 1 1 1 1 .
?:;—{n—l-l-n—Q—l-"'—l-n—k}: Z E,Wheregcd(u,v):l,

N<n<cN
n#Eny,ny,..., ng

then all the prime power factors of v’ are < N'/5: moreover, we will have

log log N < 1 N 1 R 1 < log log N
log N "ni o g n . logN ~

We will then couple this with another proposition which says that if s is some
rational number whose denominator has all its prime power factors < M'/*~¢ and
if s > logloglog M/log M, then there are integers M < m; < my < -+ < my <

e+ M where v(e) is some constant depending on ¢, such that
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The way we use this second proposition is we let M = ¢/N and

so that
log log M log log M
o dt < S o

Now, all the prime power factors of the denominator of s will be < N'/* (when N
is sufficiently large). Thus, the hypotheses of this second proposition are met, and

so there exist myq, ..., m; such that

All the denominators of these unit fractions will be no larger than

(o) = ety (o y o, (18BN 5
log N

and, no smaller than N.
The way we will prove that the error term O, (loglog N/log N) is best possible
is by showing that if

1 .
r=—+4--4+— 2<x; <--- <z are integers,
1 T

then none of the z;’s can be divisible by a prime p > x/log z; (this idea appears
in [12], [19], and [4]). It will turn out that this forces

(r + o(1))log log :zjk>

Tk

—>er<1—|-

T log xj,

thus finishing the proof of the Main Theorem.

5.2 SMOOTH NUMBERS

In order to even state, let alone prove, the propositions and lemmas needed to

prove the Main Theorem, we will need to introduce some notation and definitions
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concerning smooth numbers. We say that a number n is y-smooth if all of its prime
factors are less than or equal to y, and we define the usual smooth number counting

function as follows.
P(N,y):=#{n < N : nisy—smooth} =#{n < N : p|n, p prime = p < y}.

Define
S(N,y) == {n <N : p’In, p prime = p* <y},
and let
P(N,y) = [S(N,y)l,
the number of elements in S(N,y).

In later sections we will need various estimates concerning the ¢'(N,y) and

(N, y) functions, and we will use the following lemma to obtain them.
Lemma 5.1 (N.G. de Bruijn) For any fized ¢ < 3/5, uniformly in the range
y>2, 1<u<exp{(logy)’* "},

we have

$(g) = o) {1+ 0 (EEED)

log y
where u = log N/ log y and p(u) is the unique continuous solution to the differential-

difference equation

u) =1, if0<u<l;
p(u) (52)
up'(vw) = —p(u—1), if u>1.

(For a proof of this lemma, see [9].) We can deduce the same estimate for the

function ¢'(N,y) by using the following lemma.

Lemma 5.2

1 log L
5 o)
mp®<L mpa \/g
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Proof.

1 - 1 =1
. < 20D o <logL Yy —

pasy, a3 n2/y =2 m<L n>\/y =2
P prime
1 log L
& log L. E — < g .

From these last two lemmas we deduce that

Nlog N
)=o) =0 [N ST o v -0 (FER ). 6

Combining this with the previous two lemmas, we have the following final result of

this section.

Lemma 5.3 Ifc <1 and N >, 1, then

1 1

N<n<cN
neS(N,N1/u)

Proof. From Lemma 5.1, Lemma 5.2, and (5.3) we have the following chain of

equalities.

S ool p Ho(smaosah)
n o n N

N<n<cN N<n<eN

nGS(N,Nl/u) n is N1/%_smooth

1 1
_ Y —-0 ) D
n mp
N<n<cN Nl/u<p<(cN)1/u N/p<m<cN/p
n is nl/%_—smooth P prime

log(eN)
-0 (Fim)
= {p(u) logc+ 0O (@) -0 (%)} -0 (1?51(;(%))
= p(u)loge+ O (@) :
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5.3 PROOF OF THE MAIN THEOREM

To prove the Main Theorem we will require the following two propositions, which

are the same as those mentioned in the introduction.

Proposition 5.1 Let ¢ > 1. Then, for all N sufficiently large, there exist integers
dy,....;d; with N <dy < dy < --- <d; <ecN, such that if

I _ > % (5.4)

g N<n<cN
n#dy,..., dy

then all the prime power factors of g are < N'/%, and

loglog N 1 1 1 loglog N
BR L o 28

log N ¢ dl d2 dl log N ’ (55)

Proposition 5.2 Suppose 0 < ¢ < 1/8 and A and B are positive integers,
where ged(A,B) = 1, all the prime power divisors of B are < M'Y*=¢ and
logloglog M/log M <« A/B < 1. Select ¢(M) > 0 so that

A 1 A 1

2— < —< 2=+ —.
5S 2 p<pt (MM
neS(c(M)M,M1/4—¢)

Then, for all M sufficiently large, there exist integers ny,...,n, with M < n; < ny <
s <ng < o(MYM, each n; € S(e(M)M, M'*=%), and

Remark: From Lemma 5.3 we deduce that ¢(M) < e" 4B where v(e) is some
function depending only on €. By using a “short interval” version of Lemma 5.1 one
can prove an even stronger version of Lemma 5.3, and possibly a stronger version
of Proposition 5.2, which would work for all A/B with 1/log'™* N <« A/B < 1, for

any € > 0.
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Using these propositions we will now prove the Main Theorem. Let M be the

least integer where
1
< - < —. 5.6

Using the fact that >, . 1/n =logz+~v+ O(1/x), it is easy to see that M/N =
T HO(/N).
Now, from Proposition 5.1, we have that for N sufficiently large, there exist

integers dy, ..., d; with
N<d1 <d2 Y ax <dl <M:€r+0(1/N)N’

such that if

1
— = — d :1
> = ged(u,v) =1,

N<n<M
n#dy,...,d;

then all the prime power factors of v are < N'/®. Also, from (5.5) and (5.6) we have
that
A u __ loglog N

s — > o0 wed(A,B) = 1.
B0 N ,gcd(A, B)

We observe that once N is large enough, all the prime power factors of B will be
< N'/5. We conclude from Proposition 5.2 with ¢ = 1/20 that there exist integers
ni,...,ng with

M<ny < <ny<eW2A/By1
where v(1/20) is some constant, and such that

A_l_l_ -I-l
B n N

Thus, we have the following representation for r:
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where

log log M loglog N
v(1/204/Bpy — )1 1L 10g log M M="<e +0 08708 1 N.
ng < e { + < 10gM e + 0, 10gN

This proves the first part of the Main Theorem.

To see that the O,(loglog N/log N) error term is best possible, suppose that

r:%zxil—l—---—l—xik, where ged(U, V) = 1.

We claim that the largest prime p dividing the z;’s satisfies p < 2x(1+ o(1))/ log .

To see this, fix a prime p and let
Ty =pmp < Ty =pmg < - < T = pmy

be all the z;’s divisible by p. We have two cases to consider: case 1 is if p|V, and
case 2 is when p{ V.

If we are in case 1, where p|V, then certainly p < V, and so p < zx(1 +
o(1))/log xy, for k sufficienly large (or N sufficiently large). If we are in case 2,

where p 1V, then we must have that pt B’ either, where B’ is given by

A’ 1 1 1 1 1
_:__|_..._|__:—<—-|----—|-—>7 ged(A, B') = 1.

B x xr;  p \my ™my

Thus, p divides

1 1 1 1 1
lcm{ml,...,ml}{——l—---—l——} < 1cm{2,3,...,m1}{1—|———|———|—---—|——}

mq my 2 3 my

my(14+o(1))

_= € 5

and so p < e™(1+°(M) From this we deduce that
g 2 pmy > plog p(1 + o(1));

or in other words,

Tk

p< (1+o(1)).

log xy,
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Making use of this bound on p we have that
1 1
— < -
r= s 2. .

=1 J N<n<cN
pln=>p<cN(140(1))/log(cN)

s

1 1
N<n<cN N<mp<cN
p>cN(1+0(1))/log(cN)

The first of this last pair of sums can be estimated using the well-known result

> weney 1/n =logz/y+ O(1/x), which gives

> %zlogc—l—O(%). (5.8)

N<n<ecN
To estimate the second of the last pair of sums in (5.7), we will need the following

lemma, which is proved at the end of this section.

Lemma 5.4 Forc> 1 and a > 0 we have

1 1 1
D MR

N<mp<cN N<mp?<eN
p>N/log® N, p prime p?*>N/log® N, p prime
1 log log N 1
_ olloge)(loglog N) ) .
log N log N

Combining this lemma with (5.7) and (5.8), we have

log log N

r <logc— (logc+ o(l)) log N

Solving for ¢ we find that

o> (1 N (r—l—o(l))loglogN) .
log N

We will now prove Lemma 5.4.
Proof.  Using the fact that 7, .., 1/j = logn +~ + O(1/n), together with the

estimate

Z l: loglogn + k + o(1/logn),

p<n
p prime
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where k is some constant, we have the following chain of inequalities:

2.

N<mp<cN
p>N/log® N, p prime

mp

1 1
» Ly L
N/log* N<p<cN * N/p<m<cN/p

> ot () () o ()

N/log™ N<p<cN

3 ;—j{logc—FO(%)}

N/log™ N<p<cN

loge Y Lio (@)

N/log® N<p<cN p

N
logc{logloch — log log <1 aN) + o(1/log N)}
0g

1
O <10g N)

a(log ¢)(loglog N) L0 1
log N “NlogN )’

as claimed. The proof for the sum over prime power p*, instead of prime powers p,

is almost exactly the same.

5.4 PROOF OF PROPOSITION 5.1

Let p; < py < --- < pp, be all the primes in (N'/%, N/log'® N). Define

S = (N, eN) N Z,

Spe1 = S\ ({mp . pprime, p> N/log'® N}

and let

Up+1

Uh41

U{mp" : p prime, a > 2, pa>N1/5}>,

1
= Z —, where ged(uptr, vp41) = 1.
n

NESh41

Notice that vj4; has no prime divisor > N/log'® N; moreover, v;4; has no prime

power factors > N/log'® N, for N sufficiently large, since the only prime power
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divisors of elements of S that are > N'/5 are primes. We also have that

yloow mip—l-O 3 mlpa . (5.9)

n
nES\Sh+1 N<mp<cN mp<cN
p>N/loglO N p>N1/5 a>2
p prime

The first of these last two sums can be estimated using Lemma 5.4, which gives

Z 1 (10log ¢ + o(1)) log log N
mp® log N

?

N<mp<cN
p>N/logl0 N

and the second of the last two sums can be estimated using Lemma 5.2, which gives
o 0 log(¢N)

Z mp? - N1/10 )

mp?<cN

p>N1/5, a2
p prime

Combining the last two displayed equations with (5.9), we deduce that

Z 1 (10logec+ o(1))loglog N

n€S\Shq1 10g N

Starting with the prime p;, we will successively construct sets
Sp 2 Sh—1 2 Sh2 2 -+ 2 51,

where if

5oy,
U; n’
neS;

ged(u;, v;) = 1, then all the prime factors of v; are smaller than p;, for alls = 1,2, .., h;

moreover, we will construct these sets in such a way that

1 1
Z - for:=1,2,..., h.
n

n€Si+1\S; pi IOg N
If we can accomplish this, then if we let {d,....,d;} = S\ S, we will have
ht1
1 1 1 1 1
P A > gfz > .
RSNG| =2 mES\S
h
1 1
- ¥ teo(Yomy)
n€S\Sh41 n =1 Pi log N
loglog N
<« 2808

log N
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and

i_|_i_|_..._|_12 l:(lologc—l—o(l))loglog]\/"
dy ~ dy di n log N

n€S\Shq1
Thus, (5.5) will be satisfied. We will also have that

> L=
- = —,
n U1

where all of the prime factors of v, are smaller than N'/%; moreover, all the prime
power factors of v; will be smaller than N/, since the only prime powers > N'/5
that can divide elements of S are primes. Thus, (5.4) will be satisfied, and so if we
can construct these sets S;, Proposition 5.1 will be proved.

Suppose, for proof by induction, we have constructed the sets S; where 2 <1 <
J < h+ 1. Then, all the prime factors of v; are < p;_y. If pi_y t v;, we just let
Si—1 = 5;, and then all the prime factors of v;,_; are smaller than p;_;.

If p;_1|v;, then p;_1||v;, since the only prime power factors of elements of S that
are > N'/5 are primes. We will use Proposition 5.2 to construct S;_; as follows:
Using Bertrand’s Postulate, let ¢ be the smallest prime in [log N, 2log N], and set
M = N/(gqpi-1) > (log” N)/2. Let

B =lem{n < MY®} > lem{n < (log N)*/®/2'/%} > 2ep; M

(which will be true for M sufficiently large), and let A be the largest integer < ¢/ B/2

where

;o 1_ _1
d = Z n—p(5)logc—|—0<1ogM>,

M<n<cM
neS(cM,M1/5)

(which follows from Lemma 5.3) and
A = qBu;(vi/pi-1)™" (mod pi_y).

Since B > 2¢p;_1 M, and since A € [¢'B/2 — p;_1, B/2], we have that

SR P S L RO S
B=-°“S"BT B BT eM
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for N sufficiently large. From Proposition 5.2, there exists ny, ..., ng, with M < n; <

ng < -+ < ng < cM where each n; € S(e¢M, M1/5) and

Now, we claim that we can let
Sii = Si\{gpi-inj, 1 <j <k}

Notice that these integers we remove all have their largest prime divisor equal to
pi—1, so that we remove different numbers for different sets 5;. If we let S;_; be

defined in this way, then, since p;_1|v;,

U

Z I o A qBu; — Avi/pi
~ n v gpiaB vigB '
i—1

i-1 _
UVi-1 s
So, u;—1|(qBu; — Av;/p;—1) and v;_1|v;gB. Since gBu; — Av;/pi-y =0 (mod p;_y),
we must have that v;_1|v;gB/p;—1. Now v;/p;_1 cannot be divisible by p;_;, since
v; is not divisible by the square of a prime > N'/5, and so v;/p;_; has all its prime
power divisors < p;_;; also, B is not divisible by p,_y, since B =lem{2,3, ..., M'/°},
and M'/5 is less than N/5 < pi—1. So, all the prime divisors of v;_; are < p;,_;. We

also have that

1 1 log ¢ 1
Z oS Z R << g <<c ﬁ’
n€Si\Si—1 " M<n<cM qpi-1n Pi-14 Pi—1 10g

and so S;_; satisfies all the requisite properties. We conclude that all the sets 5;,

J=1,...,h 4+ 1, can be constructed, and so Proposition 5.1 follows.

5.5 PROOF OF PROPOSITION 5.2

Let
P = lem{2,3, ..., [M'/1=]} = M0 (4e1)

3
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where this last equality follows from the Prime Number Theorem. Let M < m; <
my < -+ < my < ¢(M)M be all the divisors of P lying in [M, c¢(M)M]; that is, all
the integers in S(c(M)M, M'/*=) in the interval [M,c(M)M]. If Y|P, we have the
following identity.

1 T2 sxn 1, ifY[X
F}L:E:P/ze<7> - 0, ifY{X.

Thus, if B|P, one can deduce that

#{{nl, ey Mg} C{m,....,my}, k variable : 1/n; + -+ 1/np = A/B}

1 man h
2 5 3 (G ) I ()f -2
(The reason for subtracting 2 in the above equation is that when A/B = 1, the
exponential sum also counts the extraneous representations 1/ny + -+ + 1/ng = 0
and 2.)
Let

F(h) = 1:[1{1+e<mi]>}

J

= ¢ <g {m% 4t m%}) (21]1illcos(ﬂh/mj)> : (5.10)

Upon substituting this into our equation above this gives

#{{nl, ey Mg} C{m,....,my}, k variable : 1/n; + -+ 1/np = A/B}
e
> 5 h_;/ze(—Ah/B)F(h) —2. (5.11)

We will now try to find a lower bound for (5.11). To do this we will show that

{

F(R)] < =

2 < .
5+ for M/2 < |h] < P/2, (5.12)
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and that
Y e(—Ah/B)F(h)+ e(Ah/B)F(~h) > 0, (5.13)
1<h<M/2

from which we deduce

Y e(=Ah/B)F(h) > F(0) = 2"

0<|hI<M/2

From this, (5.11), and (5.12), it then follows that

#{{nl, ey Mg} C{my,....,my}, k variable : 1/ny 4+ -+ -+ 1/n; = A/B}
21_1 1 O(M1/4—e)
29—
> D ,

which is exponential in [ since

A M logloglog M
> M— .
> M2 > log 11

To establish (5.13), we first observe from (5.10) that

Argle(—Ah/B)F(h)} = =220 1, {L P L}

+ Arg {H COS(’]Th/m]‘)} ) (5.14)

i=1

Using the fact that

1 1 A
— — =2—+4+4
m1+ +mz B—I—,
where
0<§< !
- T (MM’

together with the fact that each m; is > M, we have

—21 Ah 1 1 mlh| 7w
h 4o — N = 78IA < — 1
‘ PR {m1+ +mz}‘ mo|h| < <5 (5.15)

whenever
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Also, for such h, we observe that

cos(mh/m;) > cos(n/2) =0, for j =1,2,...,1,
since m; > M for all j. Hence,
!
Arg {H COS(?Th/m]')} = 0.
7=1

Using this, together with (5.14) and (5.15), we find that
T M
|Arg{e(—Ah/B)F(h)}| < > whenever |h| < CR

Thus, for such h we have
e(—Ah/B)F(h)+ e(Ah/B)F(—h) > 0,

and so (5.13) follows.
In order to establish (5.12), we will need the following lemma, which will be

proved in the next section of the paper:

Lemma 5.5 Suppose 0 < ¢ < 1/8. Let my < my < -+ < my be all the integers in
[M, (1 + 1/log M)M] where each m; € S((1 4 1/log M)M, M'/*=¢). Then for M

sufficiently large and h real, either

1. There are > M®/* m;’s which do not divide any integer in [ := (h—M?>/* h+
M3%), or
2. There is an integer in this interval which is divisible by P := lem{p® <

M4 = p prime}.
From this lemma, it follows that if

M
5 <Ihl < P2,
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and if
) &
Zer) = #{mi, =1l ¢ |la/mll > s

where ||t|| denote the distance to the nearest integer from ¢, then for some constants

c1, ¢ > 0 we will have for all M sufficiently large,
Z(Cl) > CQM3/4.
For these integers m; counted by Z(¢;), we will have that

|cos (wh/mj)| = |cos ([[h/m;l])]

< |cos(7rc1/M1/4)|
1 m2c? 1
1oy

From this and (5.10) it follows that for such h

17202 1 (c1) 2. 2arlf4 21
{ - 1 - l —7m?ecpef MUV )2 =
|F(h)|<2<1 5 1/2—|—O< )) L 2e —0< )

This establishes (5.12) and thus proves the proposition.

5.6 PROOF OF LEMMA 5.5

For each integer n satisfying
M3 og® M < n < 2M**log® M, and n € S(2M>/*1og® M, MY/*=%),  (5.16)
define
M) = {m; : m; =ng, where w(g) < 3.}
We claim that lem M(n) = P for all such n. We will show below that the truth of

this claim implies that either:

A. There is an n satisfying (5.16) such that every integer of M(n) divides a single
integer in [, which together with the assumption lem M(n) = P, gives us case 2 in

the claim of our lemma, or
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B. For each n satisfying (5.16), there is an integer m,,) € M(n) which does not

divide any integer in (h — M®/* h 4+ M®/*).We will assume that case B is true and

show that it implies case 1 in the claim of our lemma (and thus if we can show that
lem M(n) = P and that either A or B is true, we may conclude that either case 1

or case 2 in our lemma is true):

The first thing to notice is that from (5.3) we know there are at least ¢. M*/*1log® M
integers n satisfying (5.16). If all of the m,(,’s as indicated in case B were distinct,
then we would have that there are at least ¢.M*/*log® M m;’s not dividing any
integer in (h — M®/* h + M®/*), which is the first possibility claimed by our lemma,;
however, it is not necessarily the case that the mg,)’s are distinct. To overcome
this difficulty, we will now show that no m,; can lie in too many of the sets M(n):

Let

D(M) := max #{n : n satisfies (5.16) and m; € M(n)}

< max #{q : glmi, w(q) <3}

= o (10g3 M) .
From this we have that

#{ma(n) . n satisfies (5.16)}
S ¢(2M3/4 10g3 M, M1/4—E) _ ¢(M3/4 10g3 M, M1/4—E)

M3/,
> DOV) >

Thus, there are > M3/ m;’s which do not divide any integer in (h— M3/* h+ M3/*),
which covers case 1 claimed by our lemma.

We now will show that if lem M(n) = P for all n satisfying (5.16), then either
case A or case B above must be true. So, let us assume then that lem M(n) = P
for all n satisfying (5.16). If case B is true, then we are done. So, let us assume that

case B is false. Then, we must have that there is an n satisfying (5.16) such that
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each member of M(n) divides an integer in /. Since each such member is divisible
by n > M?3*log® M, which is greater than the length of I, we must have that all
such members divide the same integer in /. Thus, case A is true.

To finish the proof of our lemma, we now show that lem M(n) = P for all n
satisfying (5.16). Fix an n satisfying (5.16) and let p* < M'/4~¢ be the largest power
of the prime p that is < M'/*=¢. Let p° be the exact power of p which divides n.

Thus, e < a. We will show there exists an m; € M(n) with
mj; = np*~lily, where l; and [3 are primes with ged(lilz,n) =1,

which will imply that m; is divisible by p*, and thus p*| lem M(n). Such an m;

exists if we can just find primes [y, [, < M'/4~¢ which satisfy

M 1 M
<] Iy < 1 d(l41 = 1. 1
\/ np*T T e 2_\/< JrlogM> npi=e’ ged(hizn) (5:17)

To see that it is possible to find [; and [; we first observe that the lower limit of

the interval in (5.17) is

M M M
npee (M3/410g® MYM4=c — 1og®? M’

and the length of the interval is the multiple v/1 4+ 1/log M — 1 > 1/log M of this

lower limit. By the Prime Number Theorem, there are > ]\45/2/(610g7/2 M) primes
in this interval, and so for M sufficiently large there must be two of them [; < [,
which do not divide n < 2M>/*log® M. These two primes therefore satisfy (5.17).
To see that Iy, 1, < M'/4=¢ we observe that the upper limit of the interval in (5.17)

satisfies

1 M [oM oM QM3
1_|_ < S . _ \/_3 - < ]\41/4—67
log M ) np*—¢ n M3/4log® M log®* M

for M sufficiently large and 0 < ¢ < 1/8. Thus, we can find [; and [, as claimed,

and so our lemma is proved.



CHAPTER 6

ON A COLORING CONJECTURE ABOUT UNIT FRACTIONS

6.1 INTRODUCTION

We will prove a result on unit fractions which has the following two corollaries.

Corollary 6.1 There exists a constant b so that for every partition of the integers

in [2,07] inlo r classes, there is always one class containing a subset S with the

property > o 1/n = 1.

Corollary 6.2 Let S be a subset of {1,2,...,x} with A(z) = )

nes 1/n mazimal such
that there is no subset of S with sum of reciprocals equal to 1. Then A(z) < clog z,

for some constant ¢ < 1.

In fact, we will show for Corollary 6.1 that b may be taken to be e'670% if r is
sufficiently large, though we believe that b may be taken to be much smaller; also,
note that b cannot be taken to be smaller than e, since the integers in [2, ¢"°(")] can
be placed into r classes in such a way that the sum of reciprocals in each class is
just under 1.

Corollary 6.1 implies the result mentioned in the abstract and so resolves an
unsolved problem of Erdés and Graham, which appears in [12], [15], and [22].

We will need to introduce some notation and definitions in order to state the

Main Theorem, as well as the Propositions and Lemmas in later sections: For a

given set of integers C', let Q¢ denote the set of all the prime power divisors of

57
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elements of C, and let %(C) = > 1/q. Define C(X,Y;0) to be the integers

9€Qc
in [X,Y] all of whose prime power divisors are < X’  and let C'(X,Y;0) be those
integers n € C(X,Y;0) such that w(n) ~ Q(n) ~ loglogn, where w(n) and Q(n)
denote the number of prime divisors and the number of prime power divisors of n,

respectively.

Our Main Theorem, then, is as follows.

Main Theorem Suppose C' C C'(N, N'*3:0), where 6,5 >0, and § +0 < 1/4. If

N >451 and

1
sl
n
neC
then there exists a subset S C C for which ) .s1/n =1,

To prove the Corollaries, we will show in the next section that for r sufficiently

large,
1
> — > 6r, (6.1)
neC/(N,N1+2:1/4.32) "
where N = ' and N1 = 1665627 Thys, if we partition the integers in
[2, 1679997 into r classes, then for r sufficiently large, one of the classes ' satisfies

the hypotheses of the Main Theorem, and so our Corollary 6.1 follows. We note
that (6.1) also implies that there exists a constant ¢ > 0 so that if S is any subset
of [N, N'*3] with 3 _s1/n > cr, then

> %>> r,

n€SNC'(N,N1+9:1/4.32)

(because ZN<7L<N1+5 1/n > r) and so from our Main Theorem, S constains a subset
whose sum of reciprocals equals 1 (when r is sufficiently large), which proves the
Corollary 6.2.

The key idea in the proof of the Main Theorem is to construct a subset of C'
with useable properties. These are summarized in the following Proposition which

is proved in section 6.4.
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Proposition 6.1 If C C C'(N, N'*%;0) with § +0 < 1/4, then there exists a subsel

D C C such that
1
> ~€[2-3/N.2), (6.2)

neD

and which has the following property: If I is an interval of length N3/* for which
there are less than N'=%/(loglog N)? elements of D that do not divide any element

of I, then every element of D divides one single element of I.

The sum of the reciprocals of the elements of D is < 2 by (6.2), so if there is a
subset S of D for which )7 _<1/n is an integer then that sum equals 1 or S is the

empty set. Now if z is an integer and
P := lem{n € D},

then (1/P) 32, (mod py €(ha/P) = 1if 2/P is an integer, and is 0 otherwise, where

e(t) = e*™. Combining these remarks we deduce that

#{SCD:Zl/n:l}: % Yo EM) | -1, (6.3)

neSs —P/2<h<P/2
where
E(h) == ] (1 +e(h/n)).
Now,
B h 1 D]
B(h) = |3 ZE [T cos(xh/n) ), (6.4)
so that

Arg(E(h)) = wh {Z %} € (2rh — 7/2,2rh + 7/2),

neD
if || is an integer < N/6; and therefore E(h) + F(—h) > 0 for this case. Thus we

deduce that

Y E(h) > E(0) =27

|h|<N/6
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For h in the range N/6 < |h| < P/2, we will use Proposition 6.1 to show that

9ID|-1
()| < 2 (6.5
so that, by the last two displayed equations,
1 1 2|D|—1 2|D|—1
— E(h) > — | 2Pl - 1
P 2. Bh>p P N e
—P/2<h<P/2 N/6<|h|<P/2
since |[D| >3 . N/n > 2N — 3, and since
P < (NH)W(NQ) < €(1+O(1))N9 — 0 <2|D|) ’ (66)

by the prime number theorem. The Main Theorem then follows.

We will now see how (6.5) follows from Proposition 6.1. If |h| € [N/6, P/2]
then [ := [h — N34/2,h + N?/*/2] does not contain any integer divisible by every
element of D, since P = lem,¢pn is bigger than every element in [. Therefore, by
Proposition 6.1, there are at least N'=9=°(1) elements n € D which do not divide any
integer in I. For such n we will have that ||h/n|| > N3/*/2n > 1/(2N'/4+) (where

||t|| denotes the distance from ¢ to the nearest integer to t). Thus,

N1-6—o(1)
H cos(mh/n)

neD

<

™
<o (gpvires)

71_2 1 N1—-6-0(1)
< <1 B QN1/2+28 +0 (ﬁ))

< exp (—(7T2/8)N1/2_26_€_0(1)) <

by (6.6) since 6 + 6 < 1/4, and so (6.5) follows from (6.4).

The rest of the paper is dedicated to proving Proposition 6.1.

6.2 NORMAL INTEGERS WITH SMALL PRIME FACTORS

We will need the following result of Dickman from [1].
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Lemma 6.1 Fizx ug > 0. For any u, 0 < u < ug we have
#{n<z:pn=p<a/Y~ zp(u),

where p(u) is the unique, continuous solution to the differential difference equation

p(u) =1, ifo<u<l1

up'(u) = —p(u—1), if u>1.

From this lemma and partial summation we have, for a fixed u and 4,

1 logN [0+
Z o / p(w)dw.

U

N<n<N1+¢
po|ln=pa<N1/®

Using this, a numerical calculation shows for N = exp(163550r), § = 1/u = 1/4.32,
and § = 1/4 — 6 — 0.0001 that

1
> = > 600017
n

N<n<N1+6
p?|ln=>p? <NP

Combining this with the well-known fact that almost all integers n < =z satisfy

w(n) ~ Q(n) ~ loglogn, so that

N<n<N1+é
w(n) or (n)kloglog N

we have that (6.1) follows.

6.3 TECHNICAL LEMMAS AND THEIR PROOFS

Lemma 6.2 [fw; and w, are distinct integers which both lie in an interval of length

< N, then

> %< 3 L1 0(1) < (1 + o1)) log log log N.

pelged(unwa) U plecd(wrws)
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Proof of Lemma 6.2. Let G =ged(wy, wz). We have that G < |w; —wz| < N, since
Gllwy — wsl; also, w(G) = o(log N), since w(n) = o(log N) uniformly for n < N.
Now, by the Prime Number Theorem, we have m(log N loglog N) > log N > w(G),
for N sufficiently large, and so

1 1
Z - < Z — < (14 o(1))logloglog N.

plG p p<log Nloglog N
p prime p prime

Lemma 6.3 If H CC(N,N't5;1), B > 0, satisfies 3.y 1/n > 1/(log N)°D, and

w(n) ~ loglogn, for everyn € H, then
Y(H) > (e7' —o(1))log log N.

Proof of Lemma 6.3. From the hypotheses of the lemma, together with the fact

that ¢! > (¢/e) for t > 1, we have that

1 1 1 S(H)!
(log N = 2 5 < 2. P D

neH n: pn=pr€eQy t~loglog N
w(n)~log log n~loglog N

) Z <@>t - (E(i)ggfo—g;f(l)))(1+O(1))loglogN7

t~loglog N

and so X(H) satisfies the conclusion to Lemma 6.3.

6.4 PROOF OF PROPOSITION 6.1
Before we prove Proposition 6.1, we will need two more Propositions.

Proposition 6.2 Suppose that J C C(N,00;0), where <1, and 3 .;1/n > o>

v. If N>, .41, then there is a subset £ C J such thal

1 1
Z - € {1/ — N,I/) ; and, (6.7)

I min{r,a —v}
— > ————— for all 6.8
n 5qloglog N’ orall ¢ € g, (6:8)
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Proposition 6.3 Suppose that E C C'(N,N'*:0), 0 < 0 < 1/4, satisfies (6.7) and
(6.8). If all but at most N*=%/(loglog N)?* elements of E divide some element of an
interval I :=[h — N3/*/2 h 4+ N3/%/2], then either

A. There is a single integer in I divisible by all elements of F, or

B. There exist distinct integers wy,wy € I, such that

2N1—6’
#{neF : nfuw and n {wy} < (loglog )7’ (6.9)
lem{n € £} = lem{q € Qg}|wiwsy, and (6.10)

1
(e7' —o(1))loglog N < Z — < (I1—e"+o0(1))loglog N, for i = 1 and 2.

qlw;
9€Q R

(6.11)
These Propositions will be proved in the next two sections of the paper. To prove

Proposition 6.1, we iterate the following procedure:

1. Set y =0 and let Cy := C.

2. Use Proposition 6.2 with J =, a = Znecj I/n>2,and v = 2, to produce
a subset F satisfying (6.7) and (6.8).

3. If case A of Proposition 6.3 holds for every real number h satisfying the
hypotheses of Propositon 6.3, then we can let D := E, and Proposition 6.1 is proved.

4. If there is some h for which case B holds, then, by (6.9), we have for either
1 =1 or =2 that

1-6
2 % = % 2 % ” % (Z % - (1og21<])vg N)2N> >1-0 (Nﬁ(logllog N)2> ‘

neklE neklE nekl
n|w; nlwy or wg

Without loss of generality, assume that the inequality holds for : = 1, and let E* be
those elements of £ which divide w;.

5. Use Proposition 6.2 again, but this time with J = E*,
a =) cp1/n, and v = 2/3, to produce a set D; satisfying (6.7) and (6.8) with
E = D;. From (6.11) we have that X(D;) < ¥(E*) < (1 — e~ + o(1))loglog N.



64
6. Set Cj41 = C;\ D;. If Cj11 < 8/3, then STOP; else, increment j by 1 and go
back to step 2.
When this procedure terminates, we are either left with a set D from step 3 which
proves our Proposition, or we are left with 6 disjoint sets, Dy, ..., Dg C C'(N, N1*3: )
satisfying ) p. 1/n € [2/3 —1/N,2/3) and

(e7' —o(1))loglog N < X(D;) < (1 —e™' 4 o(1))loglog N. (6.12)

The lower bound for ¥(D;) follows from Lemma 6.3 with H = D;, and the upper
bound is as given in step 5.

We claim that there exist three of our sets, D,, Dy, D. such that if L = Qp, N
Op, N Qp,, then ¥(L) > loglog N. For any such triple, we will show that letting
D = D, U Dy U D, satisfies the conclusions of Proposition 6.1.

To show that D,, Dy, D, exist, let R be the set of prime powers < N? which are

contained in at least three of the sets Qp,, ..., @p,. Then, by (6.12),

I 1 1/6
E(R)>Z ;E(Di) -2 Z p >—<——2—0(1)>loglogN>>loglogN

e 4 \e

p prime

Thus, since there 20 = (g) triples of sets chosen from {Dy, ..., D¢}, there is at least
one such triple which gives ¥(L) > ¥(R)/20 > loglog N.

Now, letting D = D,U D, U D, certainly satisfies (6.2). Suppose that the number
of elements of D which do not divide any element of I is at most N'=%/(loglog N)?.
Then, the hypotheses of Propostion 6.3 hold for K = D,, Dy, and D.. Case B of
Proposition 6.3 cannot hold for £ = D, (or Dy, or D,), else (6.11) and (6.12) would

give us
1 1 1 1
S § S § — § _
algcd(wy ,wa) qlwy q qlwy q 9€@p, q
9€Qp, 9€Qp, 9€Qp,

> (§ -1- 0(1)) loglog N >> loglog N,

€
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which, by Lemma 6.2, would imply that w; = wy. Thus, Case A of Proposition
6.3 holds for ¥ = D,, Dy, and D.: Let W,, W;, and W, be the single integer
in [ dividing all elements of D,, Dy, and D., respectively, and thus they are all
divisible by every element of L. Since ¥(L) > loglog N, we have, from Lemma 6.2,
that W, = W, = W, = W, for some W € [. Proposition 6.1 now follows since

lem{n € D}|W.

6.5 PROOF OF PROPOSITION 6.2

To prove Proposition 6.2 we will need the following lemma.

Lemma 6.4 Suppose S is a set of integers, all of whose prime power divisors are
less than N, which satisfies Y, s 1/n > p > p. If N > 1, then there exists a subset
T C S for which

Z > M, and Z — W for all q - QT. (613)

nET
qln

Proof. We form a chain of subsets So:=5 D> 51 D --- D T := 5} as follows: given

S;, let g; be the smallest prime power such that

Z n 2qZ log logN

qzl"
if such ¢; exists, and then let S;1; = S; \ {n € S; : ¢;|n}. If no such ¢; exists, then
let k =17and T' = 5; = S,. We have that

1
ZE>,0 OloglogN Z —>,u,

neT pa<N

p prime
for N large enough, since ) . 1/p* < 2loglog V.
Proof of Proposition 6.2. We first use Lemma 6.4 with p = a, g = v, and S = J,

to produce a set Dy = T satisfying (6.13). Thus, (6.8) holds for £ = D.
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We will construct a chain of subsets Dy D Dy D Dy D -+, where each set D;
satisfies (6.8) with £ = D; = D;_;1\{w; }, where w; is some yet to be chosen element
of D;_y. If we can do this then we will eventually reach a set Dj which also satisfies
(6.7), since each w; > N, and so the Proposition will be proved.
Suppose (6.8) is satisfied for £ = D;_y, for j > 1. Take Lemma 6.4 with
S = D1, p=v,and g = v/2, and let w; be the smallest element of 7. Let
q € Qp,. If ¢{w;, then
1 1 min{r,a—v
2T X’ rlegiog
qln qln

by hypothesis. On the other hand, if ¢|w;, then, by (6.13), we get

1 1 1 v 1 v
Y =2y sy >
o H?Tn w;  4qloglog N N = b5qgloglog N
gln aln

since ¢ < N with § < 1, and v > 1, and so (6.8) holds for £ = D;.

6.6 PROOF OF PROPOSITION 6.3

Let E; denote the set of integers in K which divide an integer in /. Then we have,

by hypothesis, that |E;| > |E| — N'=¢/(loglog N)2. If ¢ € Q, then

S 1> Yk~ W > 7 10
= n e n N(loglog N)? = qloglog N

since ¢ < N and F satisfies (6.8). Thus, we have that Qp, = QF.
We will show at the end of this section that for all ¢ € Qp, there exists an integer
qd € [N3/*, N3/4+0] such that
> s, ;, (6.15)
n qd(loglog N)?

TLGE]
qd|n

where w(d) < wy = loglog N/loglogloglog N, for N sufficiently large, and all the

prime divisors of d are greater than y :=exp((1/8 — 8/2)log N/loglog N).
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For now, let us assume that this is true and let gd satisfy (6.15) for a given
g € Qpg. All the elements of E; which are divisible by ¢gd must divide the same
number n(q) € I, since otherwise there are at least two numbers ny < ng in Ej
where ¢d | ged(n1,n2) | (n2 — nq), which is impossible since 0 < (ny — nq) < N3/,
whereas qd > N°/*. We will show that as a consequence of this and ( 6.15),
1 1
Z — > <— — 0(1)) log log N. (6.16)
p* €
p?In(q)
This implies there are at most two distinct values of n(q), for all ¢ € Qp: for if there

were three prime powers qi, ¢z, g3 with n(q1),n(q2),n(gs) distinct, then, by Lemma

6.2,

1
Z — K loglog N,

p?|ged(wi w2 )

so that, by (6.16),

3

1 1
loglog N +0(1) = Y — > %(E) >y . O(logloglog N)
)

a
pa<N p i=1 pe|n(g

p prime !

v

> (3¢7!' —o(1))loglog N,

which is impossible.

If there is just one value for n(q), for all ¢ € Qg, then w = n(q) satisfies Case A of
Proposition 6.3: Otherwise, there are two possible values for n(g), call them w; and
wq, which satisfy (6.10). The lower bound in (6.11) comes from (6.16). Moreover,

Z%gzpia—Zé—k Z %:(1—6_1+0(1))10g10gN,

q|wy pe<N q|ws p®|ged(wr ,ws
9€Qg - q€Qg lged(wiw2)

which implies the upper bound in (6.11) (note: the same upper bound holds for w,),
using the Prime Number Theorem, (6.16), and Lemma 6.2, respectively.

If wy, wy fail to satisfy (6.9), then

N1—6 N1—6
(loglog N)2 > (loglog N)2

#{n € Er:nfw orwy} >#{ne€ L :nfw orwy}—
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Since there are < N34 integers in I, there must exist an integer € I,z # w; or

wq, for which

N1 N1/4—6’
. _ A
#{n € T n|:L‘} > N3/4(10g 1Og N)2 (log 10g N)2 (6 7)

Therefore,
lemyep e 1 < ged(z, wiws) < ged(z, wy)ged(z, ws) < (z —wy)(z — wy) < N3/2;
but then we have

#{neklk : nlz} <7 (1CfﬂneE,n|z n ) < max (1) = N,
lSNs 2

which contradicts (6.17), and so (6.9) follows. Thus, the proof of Proposition 6.3 is
complete once we establish (6.15) and (6.16).

To show (6.16), we observe that every integer m € F = {n/qd : n € F,qd|n}
satisfies w(m) ~ loglog N, since w(qd) < wy = o(loglog N), and since E C
C'(N, N'*%:0). From this and (6.15), F satisfies the hypothoses of Lemma 6.3 with
H = F. Thus, ©(F) > (e7! — o(1)) log log N, which implies (6.16).

We will now establish (6.15). First, we claim that for every n € F, where ¢g|n and
q € Qp, there exists a divisor gd € [N3/*, N3/4+%] where p|d implies p > y (though
it may not be the case that w(d) < wg). To show this, we construct such a d by
adding on prime factors one at a time, until ¢d is in this interval. There are enough

prime factors > y to do this, since for N >, 1 we have

n N

. n 3/4
a|ln P® n 0 (1/8—6/2)Q2(n)log N
P‘;||>“y/<1 q H};Slly P Y N exp ( loglog N )

for N sufficiently large, since Q(n) ~ loglog N.
If (6.15) fails to hold for all d € [N3/4/q, N3/**%/q] with w(d) < wo, then we
would have by (6.8) and Mertens’s Theorem that,
min{v, o — v} 1 1
5qloglog N < Zn< Z Zn

neEl N3/4 1 q<d<N3/4+0 ;g MEE
q|n pld=p>y qd|n
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D SED S TID DD SR

N3/ jq<d<N3/4+6 jy NEE dipld=y<p<N m<N1+4/qd
pld=p>y qd|n w(d) 2w (n=mgqd)
w(d) <wp

1 1 log N 1
- q(loglog N)? Z d +0 Z d

dipld=>y<p<N q d:pld=>y<p<N
w(d) >wg

(6.18)

Now

1 1\""  logN
) < I (1-= < 257 «loglog N,
d log y
d:pld=y<p<N y<p<N

p prime

by Mertens’s Theorem, and for k = (logloglog N)?, we have, again by Mertens’s

Theorem,
1 geld=wo k
> 1< > g =w 1l <1+—1>
d:pld=>y<p<N d:pld=y<p<N y<p<N
w(d) >wq p prime

_ 1 <1OgN>k+O(k) < —
ko \ logy log’? N’

Combining these two applications of Mertens’s Theorem with (6.18), we arrive at
a contradiction. Thus, there must exist a d € [N3/4/q, N*/4+%/q] satisfying (6.15),

with w(d) < wy = o(loglog N).



CHAPTER 7

CONCLUSION

The methods that we have introduced in Chapters 4, 5, and 6, although successful
at solving the problems of Erdos and Graham mentioned in the abstract, have lead
to some unsolved questions themselves. For instance, in Chapter 4, we use an
exponential sum method to prove that for any integer n and any residue class [
(mod n), there exist distinct primes py, p2, ..., pp < log®°M n such that 1/p;4+1/ps +
~+++1/pr =1 (mod n), whenver ¢ > 3. It would be desirable to improve this result
so that it works for any ¢ > 1, and we note that ¢ cannot be taken to be smaller
than 1, since the number of subsets of primes < log'™“n is at most 21°g1_€”, which
is smaller than n, the number of choices for [.

In Chapters 5 and 6, we use a different exponential sum method to find unit

fraction representations r = 1/n; + -+ 4+ 1/ng, and the method only works if each

n; has all of its prime power divisors < n3/4_0(1). In Chapter 5 we maneuver around
this limitation by combining this method with those from Chapter 4; however, there
seems to be no easy way to do this for the results in Chapter 6. Ideally, the methods
in Chapters 5 and 6 should be improvable so that each n; is allowed to have all
o

its prime power divisors < ni_ Y. Such an improvement would allow one to show
the unit fraction positive density conjecture of Erdos and Graham mentioned in the
introduction (see [12] and [15]): Given any number 0 < p < 1, and any sequence of

density > p, does there exist a finite subsequence whose sum of reciprocals equals

1?7 We note that the results in Chapter 6 imply that there exists a py so that such a

70



71
subsequence exists if 0 < pg < p < 1; however, if p < pg, then nothing can be said,
at present. Because the integers n which are n'=°(-smooth constitute almost all
of the integers, we have that the following, conjectured generalization of the Main
Theorem in Chapter 6 would suffice to prove this conjecture of Erdos and Graham:
Conjecture.  Suppose C C C'(N,N'*5:0), where 6,8 > 0, and § +0 < 1. If
N >451, and

1
yio,
n
neC

then there exists a subset S C C' for which ) _s1/n =1,

One can only hope that some brave soul will attempt this and succeed in the

not-too-distant future.
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