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1 Introduction

The purpose of this note is to give an intuitive outline of the “triangle deletion
theorem” of Ruzsa and Szemerédi, which says that if G = (V, E) has n = |V |
vertices, e = |E| edges, and o(n3) triangles, one can destroy all these triangles
through removing only o(n2) edges. A triangle here is just a triple of edges
of the form {x, y}, {y, z}, {x, z}.

Another way of stating this theorem, which is better as far as our proof
is concerned, is as follows: If G has at most ε0n

3 triangles, then one can
destroy them all through removing at most δn2 edges from the graph, where
δ = δ(ε0) → 0 as ε0 → 0.

As we saw last semester, this result is what allowed Solymosi to prove
his theorem on 2D corners in an n × n grid: For every 0 < γ ≤ 1, and all n
sufficiently large, we have that any subset S of the n×n grid of integer lattices
points {1, 2, ..., n}2 satisfying |S| ≥ γn2, necessarily contains a “corner”.
Recall that a corner is a triple of points (x, y), (x, y + z), (x + z, y + z) (they
form the vertices of a 45-45-90 right triangle).

2 Szemerédi Regularity Lemma

As we discussed, the proof of triangle deletion makes heavy use of the Sze-
merédi Regularity Lemma, so we state it here for future reference. First, we
need to define the notions of “edge density” and “regular”.

Definition. Suppose that a graph G = (V, E) is an undirected graph, and
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suppose that X, Y ⊆ V . Then, define the edge density function

d(X, Y ) :=
e(X, Y )

|X| · |Y |
,

where e(X, Y ) denotes the number of edges of the form {x, y}, where x ∈
X and y ∈ Y . Note that if there are no edges between X and Y , then
d(X, Y ) = 0; and, if the graph has all possible edges between X and Y , then
d(X, Y ) = 1.

Definition. Suppose that a graph G = (V, E) is an undirected graph, and
that X, Y ⊆ V are two sets of vertices of G. We say that {X, Y } is an
ε-regular pair if for every

X ′ ⊆ X, Y ′ ⊆ Y, satisfying |X ′| ≥ ε|X|, |Y ′| ≥ ε|Y |,

we have that
|d(X ′, Y ′) − d(X, Y )| ≤ ε.

Remark. Note that, intuitively, “regularity” is some sort of “continuity
property” for graphs. It is basically saying that the edge density can’t vary
too much if you pass to large subsets of the vertex sets X and Y .

Theorem 1 (Szemerédi’s Regularity “Lemma”) For all real numbers

ε > 0 and integers m ≥ 1, there exist integers N, M ≥ 1, such that the

following holds: If G = (V, E) is a graph having n = |V | ≥ N vertices, then

V can be partitioned into m′ + 1 vertex sets

V0, V1, V2, ..., Vm′,

where

• m ≤ m′ ≤ M

• |V0| ≤ εn.

• |V1| = |V2| = · · · = |Vm′|.

• All but at most ε(m′)2 pairs {Vi, Vj} of vertex sets are ε-regular.

Remark. We think of the set V0 as the “error vertices”. The remaining
vertex sets V1, ..., Vm′ will constitute the bulk of the vertices of G – they will
contain (1 − ε)n of the n vertices of G.
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3 Proof of triangle deletion

3.1 Invoking regularity

We take our graph G, and apply the Regularity Lemma with m and ε chosen
so that (ε/M)3/4 is just larger than ε0. Such a choice is always possible since
we know that M depends upon m and ε. What we will ultimately show is
that we only need to remove cn2 edges where c depends on ε and M , where
c shrinks to 0 as ε0 → 0. 1

So, we have a partition of G into the vertex sets

V0, V1, ..., Vm′,

and “lots” of regular pairs (at least if ε > 0 is small, which it will be).

3.2 Exceptional triangles

Triangles in the graph either connect only vertices within a single vertex set
(in other words, x, y, z ∈ Vi for some i); or connect two vertex sets (e.g.
x, y ∈ Vi while z ∈ Vj); or connect three vertex sets. It turns out that we can
easily destroy triangles with two of x, y, or z belonging to the same vertex set,
by removing very few edges. Basically, we just remove all edges connecting
a vertex set Vi to itself, and there are at most

m′∑

i=0

|Vi|
2 < (ε2 + 1/m′)n2

such edges. So far, so good, because this is of the form c′n2, where c′ depends
on ε and m′, and shrinks to 0 with ε0.

3.3 Removing edges between irregular, and low-density,
pairs

We also remove from the graph all edges connecting a vertex of Vi to a vertex
of Vj if {Vi, Vj} fails to be regular, or if i or j is 0. Since there are at most

1Note that it is well known (by a theorem of Gowers), that M has tower-type depen-
dence on ε and m. So, the number of edges we will need to delete, to remove all triangles,
will be quite large; though, it still will be a vanishingly small fraction of n

2 provided ε0 is
small enough.
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ε(m′)2 potential irregular pairs like this, we have that this accounts for only
(after a little work) at most 2εn2 edges. So, removing them all, we still have
not removed many edges from G (as noted in the previous subsection).

Lastly, we remove all edges between a pair Vi and Vj if the edge density
is smaller than 2ε (i.e. d(Vi, Vj) < 2ε). If we do this, then we remove at most

∑

1≤i,j≤m′

2ε|Vi| · |Vj| ≤ 2εn2,

edges.

3.4 Surprisingly, we have actually already deleted all
the triangles!

It turns out that the above edge deletions have completely removed all the
triangles for our graph. To see this, note that if there is even a single remain-
ing triangle in the graph, then it must connect three vertex sets Vi, Vj, Vk,
such that all pairs have “high” edge density, and are regular. What we will
now show is that if this is the case, then in fact our graph has more than
ε0n

3 triangles, which is a contradiction.
So suppose we indeed have such a triple Vi, Vj, Vk. Then, we first claim

that at most |Vi|/3 vertices of Vi connect to fewer than ε|Vj| vertices of Vj ;
and similarly, at most |Vi|/3 vertices connect to at most as many in Vk. To
see this we make use of regularity: If there were more than |Vi|/3 vertices
connecting to fewer than ε|Vj|, then letting A ⊆ Vi denote these vertices and
just letting B := Vj, we would get that

d(A, B) =
e(A, B)

|A| · |B|
≤ ε.

But this, along with the fact d(Vi, Vj) ≥ 2ε, contradicts the regularity in-
equality

|d(Vi, Vj) − d(A, B)| < ε.

(Note: We also need the condition that |Vi|/3 = |A| > ε|Vi| – that is, ε < 1/3
– in order for regularity to apply; but that is guaranteed by having ε0 > 0
small enough, which makes ε > 0 small enough.)

We conclude that there are at least |Vi|/3 vertices of Vi connected to at
least ε|Vj| vertices of Vj, and to at least ε|Vk| vertices of Vk.
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Now we make use of regularity one last time: For each “good vertex”
v ∈ Vi (connected to many vertices of Vi and to many of Vj), let Xv ⊆ Vj

denote the vertices in Vj it is connected to; similarly, let Yv ⊆ Vk. Now, since
{Vj, Vk} is regular, we have that

|d(Vi, Vj) − d(Xv, Yv)| < ε,

This then implies that
d(Xv, Yv) > ε,

and what this means is that Vi, Vj, Vk contains at least

ε|Xv| · |Yv| ≥ ε3|Vj| · |Vk|

triangles passing through v. Summing over all the ≥ |Vi|/3 “good vertices”
of Vi, this gives at least

(ε3/3)|Vi| · |Vj| · |Vk| & (ε3/3)(n/m′)3

triangles in G in total. But this will exceed ε0n
3 for ε large enough (though

still as close to 0 as needed, provided ε0 is small enough) and m′ small enough,
so we have reached a contradiction. Our theorem is now proved.
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